Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

Robust Stochastic Optimization Made Easy with RSOME

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, RSOME to facilitate the implementation of RSO models. … Read more

Data-Driven Robust Optimization Based on Kernel Learning

We propose piecewise linear kernel-based support vector clustering (SVC) as a new approach tailored to data-driven robust optimization. By solving a quadratic program, the distributional geometry of massive uncertain data can be effectively captured as a compact convex uncertainty set, which considerably reduces conservatism of robust optimization problems. The induced robust counterpart problem retains the … Read more

Distributionally Robust Markovian Traffic Equilibrium

Stochastic user equilibrium models are fundamental to the analysis of transportation systems. Such models are typically developed under the assumption of route based choice models for the users. A class of link based models under a Markovian assumption on the route choice behavior of the users has been proposed to deal with the drawbacks of … Read more

Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more

Distributionally Robust Mechanism Design

We study a mechanism design problem where an indivisible good is auctioned to multiple bidders, for each of whom it has a private value that is unknown to the seller and the other bidders. The agents perceive the ensemble of all bidder values as a random vector governed by an ambiguous probability distribution, which belongs … Read more

From Data to Decisions: Distributionally Robust Optimization is Optimal

We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, … Read more

Decomposition Algorithms for Distributionally Robust Optimization using Wasserstein Metric

We study distributionally robust optimization (DRO) problems where the ambiguity set is de ned using the Wasserstein metric. We show that this class of DRO problems can be reformulated as semi-in nite programs. We give an exchange method to solve the reformulated problem for the general nonlinear model, and a central cutting-surface method for the convex case, … Read more

Robust Multi-Period Vehicle Routing under Customer Order Uncertainty

In this paper, we study multi-period vehicle routing problems where the aim is to determine a minimum cost visit schedule and associated routing plan for each period using capacity-constrained vehicles. In our setting, we allow for customer service requests that are received dynamically over the planning horizon. In order to guarantee the generation of routing … Read more

An Analytical Study of Norms and Banach Spaces Induced by the Entropic Value-at-Risk

This paper addresses the Entropic Value-at-Risk (EVaR), a recently introduced coherent risk measure. It is demonstrated that the norms induced by EVaR induce the same Banach spaces, irrespective of the confidence level. Three spaces, called the primal, dual, and bidual entropic spaces, corresponding with EVaR are fully studied. It is shown that these spaces equipped … Read more