Reducing conservatism in Robust Optimization

Although Robust Optimization is a powerful technique in dealing with uncertainty in optimization, its solutions can be too conservative when it leads to an objective value much worse than the nominal solution or even to infeasibility of the robust problem. In practice, this can lead to robust solutions being disregarded in favor of the nominal … Read more

Robust optimization for models with uncertain SOC and SDP constraints

In this paper we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem … Read more

Decision support for strategic energy planning: a complete robust optimization framework

This paper presents a complete robust optimization framework to deal with a large range of uncertainties in optimization-based energy models. Robust formulations are proposed to address specific features of long- term energy models – such as multiplied uncertain parameters in the objective and many uncertainties in the constraints. Then, we introduce an original approach to … Read more

Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

The robust stabilization problem for discrete-time descriptor systems

In this paper the robust stabilization problem for linear discrete-time descriptor systems is investigated. This means that the transfer function matrix of the system at hand is allowed to be improper or even polynomial, as the uncertainty acts on normalized coprime factors. The main results comprising explicit analytical formulas for the maximum stability margin and … Read more

Regularization via Mass Transportation

The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization terms to the objective that penalize hypothesis complexity. In this paper … Read more

Derivative-Free Robust Optimization by Outer Approximations

We develop an algorithm for minimax problems that arise in robust optimization in the absence of objective function derivatives. The algorithm utilizes an extension of methods for inexact outer approximation in sampling a potentially infinite-cardinality uncertainty set. Clarke stationarity of the algorithm output is established alongside desirable features of the model-based trust-region subproblems encountered. We … Read more

A Primal-Dual Lifting Scheme for Two-Stage Robust Optimization

Two-stage robust optimization problems, in which decisions are taken both in anticipation of and in response to the observation of an unknown parameter vector from within an uncertainty set, are notoriously challenging. In this paper, we develop convergent hierarchies of primal (conservative) and dual (progressive) bounds for these problems that trade off the competing goals … Read more

Primal-Dual Hybrid Gradient Method for Distributionally Robust Optimization Problems

We focus on the discretization approach to distributionally robust optimization (DRO) problems and propose a numerical scheme originated from the primal-dual hybrid gradient (PDHG) method that recently has been well studied in convex optimization area. Specifically, we consider the cases where the ambiguity set of the discretized DRO model is defined through the moment condition … Read more

Time inconsistency of optimal policies of distributionally robust inventory models

In this paper, we investigate optimal policies of distributionally robust (risk averse) inventory models. We demonstrate that if the respective risk measures are not strictly monotone, then there may exist infinitely many optimal policies which are not base-stock and not time consistent. This is in a sharp contrast with the risk neutral formulation of the … Read more