A Mixed Integer Programming Model to Analyse and Optimise Patient Flow in a Surgical Suite.

Demand for healthcare services is growing rapidly in Australia and across the world, and rising healthcare expenditure is increasing pressure on sustainability of government-funded healthcare systems. In Australia, elective surgery waiting lists are growing and hospitals are struggling with a capacity shortage. To keep up with the rising demand, we need to be more efficient … Read more

K-Adaptability in Two-Stage Mixed-Integer Robust Optimization

We study two-stage robust optimization problems with mixed discrete-continuous decisions in both stages. Despite their broad range of applications, these problems pose two fundamental challenges: (i) they constitute infinite-dimensional problems that require a finite-dimensional approximation, and (ii) the presence of discrete recourse decisions typically prohibits duality-based solution schemes. We address the first challenge by studying … Read more

Discrete Approximation of Two-Stage Stochastic and Distributionally Robust Linear Complementarity Problems

In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative convergence for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We ex- plain how the discretized two-stage SLCP may … Read more

Computing the channel capacity of a communication system affected by uncertain transition probabilities

We study the problem of computing the capacity of a discrete memoryless channel under uncertainty affecting the channel law matrix, and possibly with a constraint on the average cost of the input distribution. The problem has been formulated in the literature as a max-min problem. We use the robust optimization methodology to convert the max-min … Read more

A Robust Optimization Approach for Solving Problems in Conservation Planning

In conservation planning, the data related to size, growth and diffusion of populations is sparse, hard to collect and unreliable at best. If and when the data is readily available, it is not of sufficient quantity to construct a probability distribution. In such a scenario, applying deterministic or stochastic approaches to the problems in conservation … Read more

Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

Robust Stochastic Optimization Made Easy with RSOME

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, RSOME to facilitate the implementation of RSO models. … Read more

Data-Driven Robust Optimization Based on Kernel Learning

We propose piecewise linear kernel-based support vector clustering (SVC) as a new approach tailored to data-driven robust optimization. By solving a quadratic program, the distributional geometry of massive uncertain data can be effectively captured as a compact convex uncertainty set, which considerably reduces conservatism of robust optimization problems. The induced robust counterpart problem retains the … Read more

Distributionally Robust Markovian Traffic Equilibrium

Stochastic user equilibrium models are fundamental to the analysis of transportation systems. Such models are typically developed under the assumption of route based choice models for the users. A class of link based models under a Markovian assumption on the route choice behavior of the users has been proposed to deal with the drawbacks of … Read more

Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more