Two-stage and Lagrangian Dual Decision Rules for Multistage Adaptive Robust Optimization

In this work, we design primal and dual bounding methods for multistage adaptive robust optimization (MSARO) problems motivated by two decision rules rooted in the stochastic programming literature. From the primal perspective, this is achieved by applying decision rules that restrict the functional forms of only a certain subset of decision variables resulting in an … Read more

A first-order augmented Lagrangian method for constrained minimax optimization

In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method recently developed in [26] by the authors. Under some suitable assumptions, an … Read more

Data-driven Prediction of Relevant Scenarios for Robust Combinatorial Optimization

We study iterative methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. We propose a machine-learning-based heuristic to determine starting scenarios that provide strong lower bounds. To this end, we design dimension-independent features and train a Random Forest Classifier on small-dimensional instances. Experiments show that our method improves the solution process for larger instances … Read more

A Robust Location-Allocation Model for Optimizing a Multi-Echelon Blood Supply Chain Network Under Uncertainty

Designing and planning blood supply chains is very complicated due to its uncertain nature, such as uncertain blood demand, high vulnerability to disruptions, irregular donation, and blood perishability. In this vein, this paper seeks to optimize a multi-echelon blood supply chain network under uncertainty by designing a robust location-allocation model. The magnitude of the earthquake … Read more

Set-based Robust Optimization of Uncertain Multiobjective Problems via Epigraphical Reformulations

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type … Read more

On Generalization and Regularization via Wasserstein Distributionally Robust Optimization

Wasserstein distributionally robust optimization (DRO) has found success in operations research and machine learning applications as a powerful means to obtain solutions with favourable out-of-sample performances. Two compelling explanations for the success are the generalization bounds derived from Wasserstein DRO and the equivalency between Wasserstein DRO and the regularization scheme commonly applied in machine learning. … Read more

A Brief Introduction to Robust Bilevel Optimization

Bilevel optimization is a powerful tool for modeling hierarchical decision making processes. However, the resulting problems are challenging to solve – both in theory and practice. Fortunately, there have been significant algorithmic advances in the field so that we can solve much larger and also more complicated problems today compared to what was possible to … Read more

Distributionally Robust Optimal Allocation with Costly Verification

We consider the mechanism design problem of a principal allocating a single good to one of several agents without monetary transfers. Each agent desires the good and uses it to create value for the principal. We designate this value as the agent’s private type. Even though the principal does not know the agents’ types, she … Read more

General Polyhedral Approximation of Two-Stage Robust Linear Programming

We consider two-stage robust linear programs with uncertain righthand side. We develop a General Polyhedral Approximation (GPA), in which the uncertainty set $\mathcal{U}$ is substituted by a finite set of polytopes derived from the vertex set of an arbitrary polytope that dominates $\mathcal{U}$. The union of the polytopes need not contain $\mathcal{U}$. We analyse and … Read more

Exact Approaches for Convex Adjustable Robust Optimization

Adjustable Robust Optimization (ARO) is a paradigm for facing uncertainty in a decision problem, in case some recourse actions are allowed after the actual value of all input parameters is revealed. While several approaches have been introduced for the linear case, little is known regarding exact methods for the convex case. In this work, we … Read more