A Survey on Bilevel Optimization Under Uncertainty

Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve—both in theory and practice. Fortunately, there have been significant algorithmic advances in the field … Read more

Planning of Container Crossdocking for an Express Shipment Service Network

In air transportation, container crossdocking refers to a loaded container that is transferred at an airport from an incoming flight to an outgoing flight without handling the freight on the container. It reduces handling time and handling cost relative to unloading the container and sorting the freight, and is an economical alternative if a sufficient … Read more

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

We introduce a class of algorithms, called Trajectory Following Dynamic Programming (TFDP) algorithms, that iteratively refines approximation of cost-to-go functions of multistage stochastic problems with independent random variables. This framework encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leveraging a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence and … Read more

Dual solutions in convex stochastic optimization

This paper studies duality and optimality conditions for general convex stochastic optimization problems. The main result gives sufficient conditions for the absence of a duality gap and the existence of dual solutions in a locally convex space of random variables. It implies, in particular, the necessity of scenario-wise optimality conditions that are behind many fundamental … Read more

Metrizing Fairness

We study supervised learning problems for predicting properties of individuals who belong to one of two demographic groups, and we seek predictors that are fair according to statistical parity. This means that the distributions of the predictions within the two groups should be close with respect to the Kolmogorov distance, and fairness is achieved by … Read more

Adjusted Distributionally Robust Bounds on Expected Loss Functions

Optimization problems in operations and finance often include a cost that is proportional to the expected amount by which a random variable exceeds some fixed quantity, known as the expected loss function. Representation of this function often leads to computational challenges, depending on the distribution of the random variable of interest. Moreover, in practice, a … Read more

Neur2SP: Neural Two-stage Stochastic Programming

Stochastic programming is a powerful modeling framework for decision-making under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs), the most widely applied and studied class of stochastic programming models. Solving 2SPs exactly requires evaluation of an expected value function that is computationally intractable. Additionally, having a mixed-integer linear program (MIP) or a nonlinear … Read more

Conditional Distributionally Robust Functionals

Risk measures incorporate a conservative or risk averse perspective in decisionmaking under uncertainty. Taking a variety of models for the potential outcomes into account, the distributionally robust decision is the most conservative decision among the decisions available. This paper investigates different versions of conditional risk measures and distributionally robust functionals in a multistage setting. The … Read more

Monotonicity and Complexity of Multistage Stochastic Variational Inequalities

In this paper, we consider multistage stochastic variational inequalities (MSVIs). First, we give multistage stochastic programs and multistage multi-player noncooperative game problems as source problems. After that, we derive the monotonicity properties of MSVIs under less restrictive conditions. Finally, the polynomial rate of convergence with respect to sample sizes between the original problem and its … Read more

Robust Actionable Prescriptive Analytics

We propose a new robust actionable prescriptive analytics framework that leverages past data and side information to minimize a risk-based objective function under distributional ambiguity. Our framework aims to find a policy that directly transforms the side information into implementable decisions. Specifically, we focus on developing actionable response policies that offer the benefits of interpretability … Read more