A new framework to generate Lagrangian cuts in multistage stochastic mixed-integer programming

Based on recent advances in Benders decomposition and two-stage stochastic integer programming we present a new generalized framework to generate Lagrangian cuts in multistage stochastic mixed-integer linear programming (MS-MILP). This framework can be incorporated into decomposition methods for MS-MILPs, such as the stochastic dual dynamic integer programming (SDDiP) algorithm. We show how different normalization techniques … Read more

On Lipschitz regularization and Lagrangian cuts in multistage stochastic mixed-integer linear programming

We provide new theoretical insight on the generation of linear and non-convex cuts for value functions of multistage stochastic mixed-integer programs based on Lagrangian duality. First, we analyze in detail the impact that the introduction of copy constraints, and especially, the choice of the accompanying constraint set for the copy variable have on the properties … Read more

On the Trade-Off Between Distributional Belief and Ambiguity: Conservatism, Finite-Sample Guarantees, and Asymptotic Properties

We propose and analyze a new data-driven trade-off (TRO) approach for modeling uncertainty that serves as a middle ground between the optimistic approach, which adopts a distributional belief, and the pessimistic distributionally robust optimization approach, which hedges against distributional ambiguity. We equip the TRO model with a TRO ambiguity set characterized by a size parameter … Read more

Integer Programming Approaches for Distributionally Robust Chance Constraints with Adjustable Risks

We study distributionally robust chance-constrained programs (DRCCPs) with individual chance constraints under a Wasserstein ambiguity. The DRCCPs treat the risk tolerances associated with the distributionally robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of violations by penalizing the risk tolerances in the objective function. The introduction of … Read more

A Decomposition Algorithm for Distributionally Robust Chance-Constrained Programs with Polyhedral Ambiguity Set

In this paper, we study a distributionally robust optimization approach to chance-constrained stochastic programs to hedge against uncertainty in the distributions of the random parameters. We consider a general polyhedral ambiguity set under finite support and study Wasserstein ambiguity set, total variation distance ambiguity set, and moment-based ambiguity set as examples for our computations. We … Read more

Contextual Stochastic Programs with Expected-Value Constraints

Expected-value-constrained programming (ECP) formulations are a broad class of stochastic programming problems including integrated chance constraints, risk models, and stochastic dominance formulations. Given the wide availability of data, it is common in applications to have independent contextual information associated with the target or dependent random variables of the problem. We show how to incorporate such … Read more

Distributionally Robust Optimization with Decision-Dependent Polyhedral Ambiguity

We consider a two-stage stochastic program with continuous recourse, where the distribution of the random parameters depends on the decisions. Assuming a finite sample space, we study a distributionally robust approach to this problem, where the decision-dependent distributional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the recourse function and the … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce, expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this paper, … Read more

Incorporating Service Reliability in Multi-depot Vehicle Scheduling: A Chance-Constrained Approach

The multi-depot vehicle scheduling problem (MDVSP) is a critical planning challenge for transit agencies. We introduce a novel approach to MDVSP by incorporating service reliability through chance-constrained programming (CCP), targeting the pivotal issue of travel time uncertainty and its impact on transit service quality. Our model guarantees service reliability measured by on-time performance (OTP), a … Read more

Benders decomposition with scaled cuts for multistage stochastic mixed-integer programs

We consider Benders decomposition algorithms for multistage stochastic mixed-integer programs (SMIPs) with general mixed-integer decision variables at every node in the scenario tree. We derive a hierarchy of convex polyhedral lower bounds for the value functions and expected cost to-go functions in multistage SMIPs using affine parametric cutting planes in extended spaces for the feasible … Read more