The risk-averse ultimate pit problem

In this work, we consider a risk-averse ultimate pit problem where the grade of the mineral is uncertain. We propose a two-stage formulation of the problem and discuss which properties are desirable for a risk measure in this context. We show that the only risk measure that satisfies these properties is the entropic. We propose … Read more

Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test … Read more

Tractable Reformulations of Distributionally Robust Two-stage Stochastic Programs with $\infty- Distance

This paper studies a two-stage distributionally robust stochastic linear program under the type-∞ Wasserstein ball by providing sufficient conditions under which the program can be efficiently computed via a tractable convex program. By exploring the properties of binary variables, the developed reformulation techniques are extended to those with mixed binary random parameters. The main tractable … Read more

Gaining traction – On the convergence of an inner approximation scheme for probability maximization

We analyze an inner approximation scheme for probability maximization. The approach was proposed in Fabian, Csizmas, Drenyovszki, Van Ackooij, Vajnai, Kovacs, Szantai (2018) Probability maximization by inner approximation, Acta Polytechnica Hungarica 15:105-125, as an analogue of a classic dual approach in the handling of probabilistic constraints. Even a basic implementation of the maximization scheme proved … Read more

Distributionally Robust Optimization: A Review

The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. … Read more

A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints

Stochastic convex optimization problems with expectation constraints (SOECs) are encountered in statistics and machine learning, business, and engineering. In data-rich environments, the SOEC objective and constraints contain expectations defined with respect to large datasets. Therefore, efficient algorithms for solving such SOECs need to limit the fraction of data points that they use, which we refer … Read more

Robust stochastic optimization with the proximal point method

Standard results in stochastic convex optimization bound the number of samples that an algorithm needs to generate a point with small function value in expectation. In this work, we show that a wide class of such algorithms on strongly convex problems can be augmented with sub-exponential confidence bounds at an overhead cost that is only … Read more

Logic-based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling

The distributed operating room (OR) scheduling problem aims to find an assignment of surgeries to ORs across collaborating hospitals that share their waiting lists and ORs. We propose a stochastic extension of this problem where surgery durations are considered to be uncertain. In order to obtain solutions for the challenging stochastic model, we use sample … Read more

A conservative convergent solution for continuously distributed two-stage stochastic optimization problems

Two-stage stochastic programming is a mathematical framework widely used in real- life applications such as power system operation planning, supply chains, logistics, inventory management, and financial planning. Since most of these problems cannot be solved analytically, decision makers make use of numerical methods to obtain a near-optimal solution. Some applica- tions rely on the implementation … Read more

Mixed Integer Programming models for planning maintenance at offshore wind farms under uncertainty

We introduce the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms (SMFTPO), in which a maintenance provider determines an optimal, medium-term planning for maintaining multiple wind farms while controlling for uncertainty in the maintenance tasks and weather conditions. Since the maintenance provider is typically not the owner of a wind farm, it needs to … Read more