Time inconsistency of optimal policies of distributionally robust inventory models

In this paper, we investigate optimal policies of distributionally robust (risk averse) inventory models. We demonstrate that if the respective risk measures are not strictly monotone, then there may exist infinitely many optimal policies which are not base-stock and not time consistent. This is in a sharp contrast with the risk neutral formulation of the … Read more

Resilient Course and Instructor Scheduling in the Mathematics Department at the United States Naval Academy

In this work, we study the problem of scheduling courses and instructors in the Mathematics Department at the United States Naval Academy (USNA) in a resilient manner. Every semester, the department needs to schedule around 70 instructors and 150-180 course sections into 30 class periods and 30 rooms. We formulate a stochastic integer linear program … Read more

A Sigmoidal Approximation for Chance-constrained Nonlinear Programs

We propose a sigmoidal approximation (SigVaR) for the value-at-risk (VaR) and we use this approximation to tackle nonlinear programming problems (NLPs) with chance constraints. We prove that the approximation is conservative and that the level of conservatism can be made arbitrarily small for limiting parameter values. The SigVar approximation brings computational benefits over exact mixed-integer … Read more

An incremental mirror descent subgradient algorithm with random sweeping and proximal step

We investigate the convergence properties of incremental mirror descent type subgradient algorithms for minimizing the sum of convex functions. In each step we only evaluate the subgradient of a single component function and mirror it back to the feasible domain, which makes iterations very cheap to compute. The analysis is made for a randomized selection … Read more

Modeling Time-dependent Randomness in Stochastic Dual Dynamic Programming

We consider the multistage stochastic programming problem where uncertainty enters the right-hand sides of the problem. Stochastic Dual Dynamic Programming (SDDP) is a popular method to solve such problems under the assumption that the random data process is stagewise independent. There exist two approaches to incorporate dependence into SDDP. One approach is to model the … Read more

Distributionally robust simple integer recourse

The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two stage stochastic linear programming. Structural properties and approximations of SIR … Read more

A Data-Driven Distributionally Robust Bound on the Expected Optimal Value of Uncertain Mixed 0-1 Linear Programming

This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from … Read more

Portfolio Optimization with Entropic Value-at-Risk

The entropic value-at-risk (EVaR) is a new coherent risk measure, which is an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). As important properties, the EVaR is strongly monotone over its domain and strictly monotone over a broad sub-domain including all continuous distributions, while well-known monotone risk measures, such as VaR and … Read more

New solution approaches for the maximum-reliability stochastic network interdiction problem

We investigate methods to solve the maximum-reliability stochastic network interdiction problem (SNIP). In this problem, a defender interdicts arcs on a directed graph to minimize an attacker’s probability of undetected traversal through the network. The attacker’s origin and destination are unknown to the defender and assumed to be random. SNIP can be formulated as a … Read more

A Scalable Global Optimization Algorithm for Stochastic Nonlinear Programs

We propose a global optimization algorithm for stochastic nonlinear programs that uses a specialized spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. In particular, at each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper bound is constructed … Read more