Hadamard Directional Diff erentiability of the Optimal Value of a Linear Second-order Conic Programming Problem

In this paper, we consider perturbation properties of a linear second-order conic optimization problem and its Lagrange dual in which all parameters in the problem are perturbed. We prove the upper semi-continuity of solution mappings for the primal problem and the Lagrange dual problem. We demonstrate that the optimal value function can be expressed as … Read more

Two-stage Linear Decision Rules for Multi-stage Stochastic Programming

Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in general. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting the decisions at each stage to be an affine function of the observed uncertain parameters. Finding an optimal LDR is a static optimization problem that provides an upper bound on the … Read more

An Integrated Car-and-ride Sharing System for Mobilizing Heterogeneous Travelers with Application in Underserved Communities

The fast-growing carsharing and ride-hailing businesses are generating economic benefits and societal impacts in the modern society. However, both have limitation to cover demand from diverse populations, e.g., travelers in low-income, underserved communities. In this paper, we consider two types of travelers: Type~1 who rent shared cars and Type~2 who need shared rides. We propose … Read more

Data-DrivenWater Allocation under Climate Uncertainty: A Distributionally Robust Approach

This paper investigates the application of techniques from distributionally robust optimization (DRO) to water allocation under future uncertainty. Specifically, we look at a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The main … Read more

Multistage stochastic programs with a random number of stages: dynamic programming equations, solution methods, and application to portfolio selection

We introduce the class of multistage stochastic optimization problems with a random number of stages. For such problems, we show how to write dynamic programming equations and detail the Stochastic Dual Dynamic Programming algorithm to solve these equations. Finally, we consider a portfolio selection problem over an optimization period of random duration. For several instances … Read more

Scenario Reduction for Risk-Averse Stochastic Programs

In this paper we discuss scenario reduction methods for risk-averse stochastic optimization problems. Scenario reduction techniques have received some attention in the literature and are used by practitioners, as such methods allow for an approximation of the random variables in the problem with a moderate number of scenarios, which in turn make the optimization problem … Read more

A finite ε-convergence algorithm for two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer first and second stage variables

In this paper, we propose a generalized Benders decomposition-based branch and bound algorithm, GBDBAB, to solve two-stage convex 0-1 mixed-integer nonlinear stochastic programs with mixed-integer variables in both first and second stage decisions. In order to construct the convex hull of the MINLP subproblem for each scenario in closed-form, we first represent each MINLP subproblem … Read more

On stochastic auctions in risk-averse electricity markets with uncertain supply

This paper studies risk in a stochastic auction which facilitates the integration of renewable generation in electricity markets. We model market participants who are risk averse and reflect their risk aversion through coherent risk measures. We uncover a closed-form characterization of a risk-averse generator’s optimal pre-commitment behaviour for a given real-time policy, both with and … Read more

Bounds in multi-horizon stochastic programs

In this paper, we present bounds for multi-horizon stochastic optimization problems, a class of problems introduced in [16] relevant in many industry-life applications tipically involving strategic and operational decisions on two different time scales. After providing three general mathematical formulations of a multi-horizon stochastic program, we extend the definition of the traditional Expected Value problem … Read more

A Progressive Batching L-BFGS Method for Machine Learning

The standard L-BFGS method relies on gradient approximations that are not dominated by noise, so that search directions are descent directions, the line search is reliable, and quasi-Newton updating yields useful quadratic models of the objective function. All of this appears to call for a full batch approach, but since small batch sizes give rise … Read more