On quantile cuts and their closure for chance constrained optimization problems

A chance constrained optimization problem over a finite distribution involves a set of scenario constraints from which a small subset can be violated. We consider the setting where all scenario constraints are mixed-integer convex. Existing works typically consider a mixed integer nonlinear programming (MINLP) formulation of this problem by introducing binary variables to indicate which … Read more

Optimization Driven Scenario Grouping

Scenario decomposition algorithms for stochastic programs compute bounds by dualizing all nonanticipativity constraints and solving individual scenario problems independently. We develop an approach that improves upon these bounds by re-enforcing a carefully chosen subset of nonanticipativity constraints, effectively placing scenarios into ‘groups’. Specifically, we formulate an optimization problem for grouping scenarios that aims to improve … Read more

On Sampling Rates in Simulation-Based Recursions

We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are Simulation Optimization and … Read more

Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization

This paper investigates the use of phi-divergences in ambiguous (or distributionally robust) two-stage stochastic programs. Classical stochastic programming assumes the distribution of uncertain parameters are known. However, the true distribution is unknown in many applications. Especially in cases where there is little data or not much trust in the data, an ambiguity set of distributions … Read more

Identifying Effective Scenarios in Distributionally Robust Stochastic Programs with Total Variation Distance

Traditional stochastic programs assume that the probability distribution of uncertainty is known. However, in practice, the probability distribution oftentimes is not known or cannot be accurately approximated. One way to address such distributional ambiguity is to work with distributionally robust convex stochastic programs (DRSPs), which minimize the worst-case expected cost with respect to a set … Read more

Two-sided linear chance constraints and extensions

We examine the convexity and tractability of the two-sided linear chance constraint model under Gaussian uncertainty. We show that these constraints can be applied directly to model a larger class of nonlinear chance constraints as well as provide a reasonable approximation for a challenging class of quadratic chance constraints of direct interest for applications in … Read more

Risk Averse Shortest Path Interdiction

We consider a Stackelberg game in a network, where a leader minimizes the cost of interdicting arcs and a follower seeks the shortest distance between given origin and destination nodes under uncertain arc traveling cost. In particular, we consider a risk-averse leader, who aims to keep high probability that the follower’s traveling distance is longer … Read more

An empirical analysis of scenario generation methods for stochastic optimization

This work presents an empirical analysis of popular scenario generation methods for stochastic optimization, including quasi-Monte Carlo, moment matching, and methods based on probability metrics, as well as a new method referred to as Voronoi cell sampling. Solution quality is assessed by measuring the error that arises from using scenarios to solve a multi-dimensional newsvendor … Read more

A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization

Multistage stochastic optimization leads to NLPs over scenario trees that become extremely large when many time stages or fine discretizations of the probability space are required. Interior-point methods are well suited for these problems if the arising huge, structured KKT systems can be solved efficiently, for instance, with a large scenario tree but a moderate … Read more

Parallel Scenario Decomposition of Risk Averse 0-1 Stochastic Programs

In this paper, we extend a recently proposed scenario decomposition algorithm (Ahmed (2013)) for risk-neutral 0-1 stochastic programs to the risk-averse setting. Specifically, we consider risk-averse 0-1 stochastic programs with objective functions based on coherent risk measures. Using a dual representation of a coherent risk measure, we first derive an equivalent minimax reformulation of the … Read more