Quantitative Stability Analysis of Stochastic Generalized Equations

We consider the solution of a system of stochastic generalized equations (SGE) where the underlying functions are mathematical expectation of random set-valued mappings. SGE has many applications such as characterizing optimality conditions of a nonsmooth stochastic optimization problem and a stochastic equilibrium problem. We derive quantitative continuity of expected value of the set-valued mapping with … Read more

Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming

In this paper, we introduce a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming (SP) problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this … Read more

Time Consistency Decisions and Temporal Decomposition of Coherent Risk Functionals

It is well known that most risk measures (risk functionals) are time inconsistent in the following sense: It may happen that today some loss distribution appears to be less risky than another, but looking at the conditional distribution at a later time, the opposite relation holds. In this article we demonstrate that this time inconsistency … Read more

Scenario Trees – A Process Distance Approach

The approximation of stochastic processes by trees is an important topic in multistage stochastic programming. In this paper we focus on improving the approximation of large trees by smaller (tractable) trees. The quality of the approximation is measured by the nested distance, recently introduced in [Pflug]. The nested distance is derived from the Wasserstein distance. … Read more

An Alternating Direction Method for Chance-Constrained Optimization Problems with Discrete Distributions

We consider a chance-constrained optimization problem (CCOP), where the random variables follow finite discrete distributions. The problem is in general nonconvex and can be reformulated as a mixed-integer program. By exploiting the special structure of the probabilistic constraint, we propose an alternating direction method for finding suboptimal solutions of CCOP. At each iteration, this method … Read more

On the convergence of decomposition methods for multi-stage stochastic convex programs

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to … Read more

Optimization with multivariate conditional value-at-risk constraints

For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate … Read more

Stochastic integer programming based algorithms for adaptable open block surgery scheduling

We develop algorithms for adaptable schedule problems with patient waiting time, surgeon waiting time, OR idle time and overtime costs. Open block surgery scheduling of multiple surgeons operating in multiple operating rooms (ORs) motivates the work. We investigate creating an “adaptable” schedule of surgeries under knowledge that this schedule will change (be rescheduled) during execution … Read more

Consistency of sample estimates of risk averse stochastic programs

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent identically distributed data. Under mild regularity conditions we prove a Law of Large Numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straight forward way to establishing … Read more

Parallel distributed-memory simplex for large-scale stochastic LP problems

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interior-point methods are generally used. However, these approaches do not provide optimal … Read more