Wasserstein Regularization for 0-1 Loss

Wasserstein distributionally robust optimization (DRO) finds robust solutions by hedging against data perturbation specified by distributions in a Wasserstein ball. The robustness is linked to the regularization effect, which has been studied for continuous losses in various settings. However, existing results cannot be simply applied to the 0-1 loss, which is frequently seen in uncertainty … Read more

Decision-making with Side Information: A Causal Transport Robust Approach

We consider stochastic optimization with side information where, prior to decision making, covariate data are available to inform better decisions. In particular, we propose to consider a distributionally robust formulation based on causal transport distance. Compared with divergence and Wasserstein metric, the causal transport distance is better at capturing the information structure revealed from the conditional distribution … Read more

Data-driven Multistage Distributionally Robust Linear Optimization with Nested Distance

We study multistage distributionally robust linear optimization, where the uncertainty set is defined as a ball of distribution centered at a scenario tree using the nested distance. The resulting minimax problem is notoriously difficult to solve due to its inherent non-convexity. In this paper, we demonstrate that, under mild conditions, the robust risk evaluation of … Read more

A Projected-Search Interior Method for Nonlinear Optimization

This paper concerns the formulation and analysis of a new interior method for general nonlinearly constrained optimization that combines a shifted primal-dual interior method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual … Read more

Robust Two-Stage Optimization with Covariate Data

We consider a generalization of two-stage decision problems in which the second-stage decision may be a function of a predictive signal but cannot adapt fully to the realized uncertainty. We will show how such problems can be learned from sample data by considering a family of regularized sample average formulations. Furthermore, our regularized data-driven formulations … Read more

An Explicit Spectral Fletcher-Reeves Conjugate Gradient Method for Bi-criteria Optimization

In this paper we propose a spectral Fletcher-Reeves conjugate gradient-like method (SFRCG) for solving unconstrained bi-criteria minimisation problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. This latter verifies furthermore a sufficient descent property which does not depend on the line search nor … Read more

Data-Driven Approximation of Contextual Chance-Constrained Stochastic Programs

Uncertainty in classical stochastic programming models is often described solely by independent random parameters, ignoring their dependence on multidimensional features. We describe a novel contextual chance-constrained programming formulation that incorporates features, and argue that solutions that do not take them into account may not be implementable. Our formulation cannot be solved exactly in most cases, … Read more

Inexact Penalty Decomposition Methods for Optimization Problems with Geometric Constraints

This paper provides a theoretical and numerical investigation of a penalty decomposition scheme for the solution of optimization problems with geometric constraints. In particular, we consider some  situations where parts of the constraints are nonconvex and complicated, like cardinality constraints, disjunctive programs, or matrix problems involving rank constraints. By a variable duplication and  decomposition strategy, … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more