Data-Driven Ranges of Near-Optimal Actions for Finite Markov Decision Processes

Markov decision process (MDP) models have been used to obtain non-stationary optimal decision rules in various applications, such as treatment planning in medical decision making. However, in practice, decision makers may prefer other strategies that are not statistically different from the optimal decision rules. To benefit from the decision makers’ expertise and provide flexibility in … Read more

Optimization with Constraint Learning: A Framework and Survey

Many real-life optimization problems frequently contain one or more constraints or objectives for which there are no explicit formulas. If data is however available, these data can be used to learn the constraints. The benefits of this approach are clearly seen, however there is a need for this process to be carried out in a … Read more

A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems

This paper presents a proximal bundle (PB) framework based on a generic bundle update scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-complexity bounds for three PB variants based on different bundle update schemes are obtained in the … Read more

Incorporating Holding Costs in Continuous-TimeService Network Design: New Model, Relaxation, and Exact Algorithm

The continuous-time service network design problem (CTSNDP) occurs widely in practice. It aims to minimize the total operational cost by optimizing the schedules of transportation services and the routes of shipments for dispatching, which can occur at any time point along a continuous planning horizon. In order to be cost effective, shipments often wait to … Read more

Adjustable robust optimization with objective uncertainty

In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and … Read more

Presolving for Mixed-Integer Semidefinite Optimization

This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The considered methods include adding linear constraints, bounds relying on 2 × 2 minors of the semidefinite constraints, bound tightening based on solving … Read more

Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems

Two-level stochastic optimization formulations have become instrumental in a number ofmachine learning contexts such as continual learning, neural architecture search, adversariallearning, and hyperparameter tuning. Practical stochastic bilevel optimization problemsbecome challenging in optimization or learning scenarios where the number of variables ishigh or there are constraints. In this paper, we introduce a bilevel stochastic gradient method … Read more

On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport

This paper studies the equitable and optimal transport (EOT) problem, which has many applications such as fair division problems and optimal transport with multiple agents etc. In the discrete distributions case, the EOT problem can be formulated as a linear program (LP). Since this LP is prohibitively large for general LP solvers, Scetbon \etal \cite{scetbon2021equitable} … Read more

Regularized Step Directions in Conjugate Gradient Minimization for Machine Learning

Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used in machine learning applications. We focus on the use of cubic regularization to improve the CGM direction independent of the steplength (learning rate) computation. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction, … Read more

Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach

We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, … Read more