Equivalent second-order cone programs for distributionally robust zero-sum games

We consider a two player zero-sum game with stochastic linear constraints. The probability distributions of the vectors associated with the constraints are partially known. The available information with respect to the distribution is based mainly on the two first moments. In this vein, we formulate the stochastic linear constraints as distributionally robust chance constraints. We … Read more

An inexact version of the symmetric proximal ADMM for solving separable convex optimization

In this paper, we propose and analyze an inexact version of the symmetric proximal alternating direction method of multipliers (ADMM) for solving linearly constrained optimization problems. Basically, the method allows its first subproblem to be solved inexactly in such way that a relative approximate criterion is satisfied. In terms of the iteration number $k$, we … Read more

Building Load Control using Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty and the Risk-Adjustable Variants

Aggregation of heating, ventilation, and air conditioning (HVAC) loads can provide reserves to absorb volatile renewable energy, especially solar photo-voltaic (PV) generation. However, the time-varying PV generation is not perfectly known when the system operator decides the HVAC control schedules. To consider the unknown uncertain PV generation, in this paper, we formulate a distributionally robust … Read more

Linear Programming and Community Detection

The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. CitationDepartment of Combinatorics & Optimization, University of Waterloo, Canada,06/2019ArticleDownload … Read more

Proximity in Concave Integer Quadratic Programming

A classic result by Cook, Gerards, Schrijver, and Tardos provides an upper bound of n∆ on the proximity of optimal solutions of an Integer Linear Programming problem and its standard linear relaxation. In this bound, n is the number of variables and ∆ denotes the maximum of the absolute values of the subdeterminants of the … Read more

Decomposition-based algorithms for the crew scheduling and routing problem in road restoration

The crew scheduling and routing problem (CSRP) consists of determining the best route and schedule for a single crew to repair damaged nodes in a network affected by extreme events. The problem also involves the design of paths to connect a depot to demand nodes that become accessible only after the damaged nodes in these … Read more

Refinements of Kusuoka Representations on L^{\infty}

We study Kusuoka representations of law invariant coherent risk measures on the space of bounded random variables. We refine this representation by giving that any law invariant coherent risk measure can be written as an integral of the Average Value-at-Risk measures on $[0,1]$, which gives a numerically constructive way to approximate any law invariant coherent … Read more

Dual bounds for periodical stochastic programs

In this paper we discuss construction of the dual of a periodical formulation of infinite horizon linear stochastic programs with a discount factor. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound especially when the … Read more

An Alternative Perspective on Copositive and Convex Relaxations of Nonconvex Quadratic Programs

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family … Read more