A Class of Stochastic Variance Reduced Methods with an Adaptive Stepsize

Stochastic variance reduced methods have recently surged into prominence for solving large scale optimization problems in the context of machine learning. Tan, Ma and Dai et al. first proposed the new stochastic variance reduced gradient (SVRG) method with the Barzilai-Borwein (BB) method to compute step sizes automatically, which performs well in practice. On this basis, … Read more

A Combinatorial Algorithm for the Multi-commodity Flow Problem

This paper researches combinatorial algorithms for the multi-commodity flow problem. We relax the capacity constraints and introduce a \emph{penalty function} \(h\) for each arc. If the flow exceeds the capacity on arc \(a\), arc \(a\) would have a penalty cost. Based on the \emph{penalty function} \(h\), a new conception , \emph{equilibrium pseudo-flow}, is introduced. Then … Read more

Integer Programming for Learning Directed Acyclic Graphs from Continuous Data

Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a … Read more

Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

We study the convergence rate of a hierarchy of upper bounds for polynomial minimization prob-lems, proposed by Lasserre [SIAM J. Optim.21(3) (2011), pp.864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over … Read more

A Combinatorial Algorithm for the Multi-commodity Flow Problem

This paper researches combinatorial algorithms for the multi-commodity flow problem. We relax the capacity constraints and introduce a \emph{penalty function} \(h\) for each arc. If the flow exceeds the capacity on arc \(a\), arc \(a\) would have a penalty cost. Based on the \emph{penalty function} \(h\), a new conception , \emph{equilibrium pseudo-flow}, is introduced. Then … Read more

Self-Concordance and Matrix Monotonicity with Applications to Quantum Entanglement Problems

Let $V$ be an Euclidean Jordan algebra and $\Omega$ be a cone of invertible squares in $V$. Suppose that $g:\mathbb{R}_{+} \to \mathbb{R}$ is a matrix monotone function on the positive semiaxis which naturally induces a function $\tilde{g}: \Omega \to V$. We show that $-\tilde{g}$ is compatible (in the sense of Nesterov-Nemirovski) with the standard self-concordant … Read more

ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization

We propose a new stochastic first-order algorithmic framework to solve stochastic composite nonconvex optimization problems that covers both finite-sum and expectation settings. Our algorithms rely on the SARAH estimator introduced in (Nguyen et al., 2017a) and consist of two steps: a proximal gradient and an averaging step making them different from existing nonconvex proximal-type algorithms. … Read more

Burer-Monteiro guarantees for general semidefinite programs

Consider a semidefinite program (SDP) involving an $n\times n$ positive semidefinite matrix $X$. The Burer-Monteiro method consists in solving a nonconvex program in $Y$, where $Y$ is an $n\times p$ matrix such that $X = Y Y^T$. Despite nonconvexity, Boumal et al. showed that the method provably solves generic equality-constrained SDP’s when $p > \sqrt{2m}$, … Read more

Knapsack Polytopes – A Survey

The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy a given single linear inequality with non-negative coefficients. This paper provides a comprehensive overview of knapsack polytopes. We discuss basic polyhedral properties, (lifted) cover and other valid inequalities, cases for which complete linear descriptions are known, geometric properties for small dimensions, … Read more

Lower Bounds for the Bandwidth Problem

The Bandwidth Problem asks for a simultaneous permutation of the rows and columns of the adjacency matrix of a graph such that all nonzero entries are as close as possible to the main diagonal. This work focuses on investigating novel approaches to obtain lower bounds for the bandwidth problem. In particular, we use vertex partitions … Read more