Two-stage stochastic programming model for routing multiple drones with fuel constraints

Uses of drones and unmanned vehicles (UAVs) in ground or aerial are increasing in both civil and military applications. This paper develops a two-stage stochastic optimization model with a recourse for a multiple drone-routing problem with fuel constraints under uncertainty for the travel between any pair of targets/refueling-sites/depot. We are given a set of n … Read more

DASC: a Decomposition Algorithm for multistage stochastic programs with Strongly Convex cost functions

We introduce DASC, a decomposition method akin to Stochastic Dual Dynamic Programming (SDDP) which solves some multistage stochastic optimization problems having strongly convex cost functions. Similarly to SDDP, DASC approximates cost-to-go functions by a maximum of lower bounding functions called cuts. However, contrary to SDDP, the cuts computed with DASC are quadratic functions. We also … Read more

The nonsmooth landscape of phase retrieval

We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions, a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that … Read more

A One-Parameter Family of Middle Proximal ADMM for Constrained Separable Convex Optimization

This work is devoted to studying a family of Middle Proximal Alternating Direction Method of Multipliers (MP-ADM) for solving multi-block constrained separable convex optimization. Such one-parameter family of MP-ADM combines both Jacobian and Gauss-Seidel types of alternating direction method, and proximal point techniques are only applied to the middle subproblems to promote the convergence. We … Read more

Computational Aspects of Bayesian Solution Estimators in Stochastic Optimization

We study a class of stochastic programs where some of the elements in the objective function are random, and their probability distribution has unknown parameters. The goal is to find a good estimate for the optimal solution of the stochastic program using data sampled from the distribution of the random elements. We investigate two common … Read more

The extensions of Yuan’s lemma and applications in S-lemma

In this paper we extend a lemma due to Yuan from several aspects. A new proof of Yuan’s lemma is given. A rank-one decomposition of positive semidefinite matrix is further developed. With the extended rank-one de- composition results, we generalize the Yuan’s lemma to general quadratic function systems, interval quadratic function systems and quadratic matrix … Read more

Set-Completely-Positive Representations and Cuts for the Max-Cut Polytope and the Unit Modulus Lifting

This paper considers a generalization of the “max-cut-polytope” $\conv\{\ xx^T\mid x\in\real^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of real symmetric $n\times n$-matrices with all-ones-diagonal to a complex “unit modulus lifting” $\conv\{xx\HH\mid x\in\complex^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of … Read more

The robust stabilization problem for discrete-time descriptor systems

In this paper the robust stabilization problem for linear discrete-time descriptor systems is investigated. This means that the transfer function matrix of the system at hand is allowed to be improper or even polynomial, as the uncertainty acts on normalized coprime factors. The main results comprising explicit analytical formulas for the maximum stability margin and … Read more

Characterizing and testing subdifferential regularity for piecewise smooth objective functions

Functions defined by evaluation programs involving smooth elementals and absolute values as well as the max- and min-operator are piecewise smooth. Using piecewise linearization we derived in [7] for this class of nonsmooth functions first and second order conditions for local optimality (MIN). They are necessary and sufficient, eespectively. These generalizations of the classical KKT … Read more

Weak Stability of $\ell_1hBcminimization Methods in Sparse Data Reconstruction

As one of the most plausible convex optimization methods for sparse data reconstruction, $\ell_1$-minimization plays a fundamental role in the development of sparse optimization theory. The stability of this method has been addressed in the literature under various assumptions such as restricted isometry property (RIP), null space property (NSP), and mutual coherence. In this paper, … Read more