A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph

We study the Knapsack Problem with Conflict Graph (KPCG), an extension of the 0-1 Knapsack Problem, in which a conflict graph describing incompatibilities between items is given. The goal of the KPCG is to select the maximum profit set of compatible items while satisfying the knapsack capacity constraint. We present a new Branch-and-Bound approach to … Read more

Branch-and-Cut for Linear Programs with Overlapping SOS1 Constraints

SOS1 constraints require that at most one of a given set of variables is nonzero. In this article, we investigate a branch-and-cut algorithm to solve linear programs with SOS1 constraints. We focus on the case in which the SOS1 constraints overlap. The corresponding conflict graph can algorithmically be exploited, for instance, for improved branching rules, … Read more

An optimal subgradient algorithm with subspace search for costly convex optimization problems

This paper presents an acceleration of the optimal subgradient algorithm OSGA \cite{NeuO} for solving convex optimization problems, where the objective function involves costly affine and cheap nonlinear terms. We combine OSGA with a multidimensional subspace search technique, which leads to low-dimensional problem that can be solved efficiently. Numerical results concerning some applications are reported. A … Read more

An (n\log(n))$ Algorithm for Projecting Onto the Ordered Weighted $\ell_1$ Norm Ball

The ordered weighted $\ell_1$ (OWL) norm is a newly developed generalization of the Octogonal Shrinkage and Clustering Algorithm for Regression (OSCAR) norm. This norm has desirable statistical properties and can be used to perform simultaneous clustering and regression. In this paper, we show how to compute the projection of an $n$-dimensional vector onto the OWL … Read more

Cutting planes from extended LP formulations

Given a mixed-integer set defined by linear inequalities and integrality requirements on some of the variables, we consider extended formulations of its continuous (LP) relaxation and study the effect of adding cutting planes in the extended space. In terms of optimization, extended LP formulations do not lead to better bounds as their projection onto the … Read more

New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms

In this paper, we further establish two types of DC (Difference of Convex functions) programming for $l_0$ sparse reconstruction. Our DC objective functions are specified to the difference of two norms. One is the difference of $l_1$ and $l_{\sigma_q}$ norms (DC $l_1$-$l_{\sigma_q}$ for short) where $l_{\sigma_q}$ is the $l_1$ norm of the $q$-term ($q\geq1$) best … Read more

Active-Set Methods for Convex Quadratic Programming

Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate … Read more

The cone condition and nonsmoothness in linear generalized Nash games

We consider linear generalized Nash games and introduce the so-called cone condition which characterizes the smoothness of the Nikaido-Isoda function under weak assumptions. The latter mapping arises from a reformulation of the generalized Nash equilibrium problem as a possibly nonsmooth optimization problem. Other regularity conditions like LICQ or SMFC(Q) are only sufficient for smoothness, but … Read more

A forward-backward-forward differential equation and its asymptotic properties

In this paper, we approach the problem of finding the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space via an implicit forward-backward-forward dynamical system with nonconstant relaxation parameters and stepsizes of the resolvents. Besides proving existence and uniqueness of strong global solutions … Read more

Optimization of multiple receivers solar power tower systems

In this article a new procedure to optimize the design of a solar power tower system with multiple receivers is presented. The variables related to the receivers (height, aperture tilt angle, azimuth angle and aperture size) as well as the heliostat field layout are optimized seeking to minimize the levelized cost of thermal energy. This … Read more