Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

We complete the complexity classification by degree of minimizing a polynomial in two variables over the integer points in a polyhedron. Previous work shows that in two variables, optimizing a quadratic polynomial over the integer points in a polyhedral region can be done in polynomial time, while optimizing a quartic polynomial in the same type … Read more

Adaptive Augmented Lagrangian Methods: Algorithms and Practical Numerical Experience

In this paper, we consider augmented Lagrangian (AL) algorithms for solving large-scale nonlinear optimization problems that execute adaptive strategies for updating the penalty parameter. Our work is motivated by the recently proposed adaptive AL trust region method by Curtis et al. [An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program. 152 (2015), pp.201–245.]. … Read more

Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. … Read more

Product Assortment Competition with the Decoy Effect

The fraction of customers who choose a particular item from among a set of available items can be increased significantly by the inclusion of a related inferior (and apparently irrelevant) item in the choice set. This violation of the independence from irrelevant alternatives and the regularity properties is called the decoy effect, dominance effect, or … Read more

Convergence rate analysis of primal-dual splitting schemes

Primal-dual splitting schemes are a class of powerful algorithms that solve complicated monotone inclusions and convex optimization problems that are built from many simpler pieces. They decompose problems that are built from sums, linear compositions, and infimal convolutions of simple functions so that each simple term is processed individually via proximal mappings, gradient mappings, and … Read more

On the Global Linear Convergence of the ADMM with Multi-Block Variables

The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of $N$ convex functions with $N$-block variables linked by some linear constraints. While the convergence of the ADMM for $N=2$ was well established in the literature, … Read more

On the Sublinear Convergence Rate of Multi-Block ADMM

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions whose variables are linked by linear constraints, has remained unclear for a very long time. Recently, Chen … Read more

Differential properties of Euclidean projection onto power cone

In this paper, we study differential properties of Euclidean projection onto the power cone $K^{(p,q)}_n=\{(x,y,z)\in \mathbb{R}_+\times \mathbb{R}_+\times \mathbb{R}^n,\norm{z} \leq x^p y^q\}$, where $0< p,q < 1, p+q=1$. Projections onto certain power cones are examples of semismooth but non-strongly-semismooth projection onto a convex cone. Citation Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang ... Read more

On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond

Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refinement of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent augmentations” (i.e., directions with the best … Read more

Quadratic regularization projected alternating Barzilai–Borwein method for constrained optimization

In this paper, based on the regularization techniques and projected gradient strategies, we present a quadratic regularization projected alternating Barzilai–Borwein (QRPABB) method for minimizing differentiable functions on closed convex sets. We show the convergence of the QRPABB method to a constrained stationary point for a nonmonotone line search. When the objective function is convex, we … Read more