Another pedagogy for pure-integer Gomory

We present pure-integer Gomory cuts in a way so that they are derived with respect to a “dual form” pure-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. The input integer problem is not in standard form, and so the cuts are derived a bit differently. In … Read more

Simplified semidefinite and completely positive relaxations

This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented by Burer. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the … Read more

BOUNDS AND APPROXIMATIONS FOR MULTISTAGE STOCHASTIC PROGRAMS

Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e. the number of decision stages. For this reason approximations which … Read more

Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics

The traditional two-stage stochastic programming approach assumes the distribution of the random parameter in a problem is known. In most practices, however, the distribution is actually unknown. Instead, only a series of historic data are available. In this paper, we develop a data-driven stochastic optimization approach to providing a risk-averse decision making under uncertainty. In … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more

The Jordan Algebraic Structure of the Circular Cone

In this paper, we study and analyze the algebraic structure of the circular cone. We establish a new efficient spectral decomposition, set up the Jordan algebra associated with the circular cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner product. We then show that the cone of squares of … Read more

On the von Neumann and Frank-Wolfe Algorithms with Away Steps

The von Neumann algorithm is a simple coordinate-descent algorithm to determine whether the origin belongs to a polytope generated by a finite set of points. When the origin is in the interior of the polytope, the algorithm generates a sequence of points in the polytope that converges linearly to zero. The algorithm’s rate of convergence … Read more

Randomized Derivative-Free Optimization of Noisy Convex Functions

We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing step-sizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS for solving convex … Read more

Stability of p-order metric regularity

This paper shows that $p$-order metric regularity is preserved under perturbation of H\”older continuous mapping of order $1/p$, which answers affirmatively a problem posed recently by Dontchev. CitationTechnical report, Department of Mathematics, Chinese University of Hong Kong, 07/2015

On the unimodality of METRIC Approximation subject to normally distributed demands

METRIC Approximation is a popular model for supply chain management. We prove that it has a unimodal objective function when the demands of the n retailers are normally distributed. That allows us to solve it with a convergent sequence. This optimization method leads us to a closed-form equation of computational complexity O(n). Its solutions are … Read more