A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

Multiperiod Portfolio Optimization with General Transaction Costs

We analyze the properties of the optimal portfolio policy for a multiperiod mean-variance investor facing multiple risky assets in the presence of general transaction costs such as proportional, market impact, and quadratic transaction costs. For proportional transaction costs, we find that a buy-and-hold policy is optimal: if the starting portfolio is outside a parallelogram-shaped no-trade … Read more

Theoretical aspects of adopting exact penalty elements within sequential methods for nonlinear programming

In the context of sequential methods for solving general nonlinear programming problems, it is usual to work with augmented subproblems instead of the original ones, tackled by the $\ell_1$-penalty function together with the shortcut usage of a convenient penalty parameter. This paper addresses the theoretical reasoning behind handling the original subproblems by such an augmentation … Read more

On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization

In this note we present tight lower bounds on the information-based complexity of large-scale smooth convex minimization problems. We demonstrate, in particular, that the k-step Conditional Gradient (a.k.a. Frank-Wolfe) algorithm as applied to minimizing smooth convex functions over the n-dimensional box with n ≥ k is optimal, up to an O(ln n)-factor, in terms of … Read more

RSP-Based Analysis for Sparsest and Least $\ell_1hBcNorm Solutions to Underdetermined Linear Systems

Recently, the worse-case analysis, probabilistic analysis and empirical justification have been employed to address the fundamental question: When does $\ell_1$-minimization find the sparsest solution to an underdetermined linear system? In this paper, a deterministic analysis, rooted in the classic linear programming theory, is carried out to further address this question. We first identify a necessary … Read more

Second-order Characterizations of Tilt Stability with Applications to Nonlinear Programming

The paper is devoted to the study of tilt-stable local minimizers of general optimization problems in finite-dimensional spaces and its applications to classical nonlinear programs with twice continuously differentiable data. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization, and this notion has been extensively studied in … Read more

Some notes on applying computational divided differencing in optimization

We consider the problem of accurate computation of the finite difference $f(\x+\s)-f(\x)$ when $\Vert\s\Vert$ is very small. Direct evaluation of this difference in floating point arithmetic succumbs to cancellation error and yields 0 when $\s$ is sufficiently small. Nonetheless, accurate computation of this finite difference is required by many optimization algorithms for a “sufficient decrease” … Read more

Convex relaxation for finding planted influential nodes in a social network

We consider the problem of maximizing influence in a social network. We focus on the case that the social network is a directed bipartite graph whose arcs join senders to receivers. We consider both the case of deterministic networks and probabilistic graphical models, that is, the so-called “cascade” model. The problem is to find the … Read more

Full Stability in Finite-Dimensional Optimization

The paper is devoted to full stability of optimal solutions in general settings of finite-dimensional optimization with applications to particular models of constrained optimization problems including those of conic and specifically semidefinite programming. Developing a new technique of variational analysis and generalized differentiation, we derive second-order characterizations of full stability, in both Lipschitzian and H\”olderian … Read more

A practicable framework for distributionally robust linear optimization

We developed a modular framework to obtain exact and approximate solutions to a class of linear optimization problems with recourse with the goal to minimize the worst-case expected objective over an ambiguity set of distributions. The ambiguity set is specified by linear and conic quadratic representable expectation constraints and the support set is also linear … Read more