S2MPJ and CUTEst optimization problems for Matlab, Python and Julia

A new decoder for the SIF test problems of the \cutest\ collection is described, which produces problem files allowing the computation of values and derivatives of the objective function and constraints of most \cutest\ problems directly within “native” Matlab, Python or Julia, without any additional installation or interfacing with MEX files or Fortran programs. When … Read more

A progressive decoupling algorithm for minimizing the difference of convex and weakly convex functions over a linear subspace

Commonly, decomposition and splitting techniques for optimization problems strongly depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization problems are scarce and often lack convergence guarantees. Among the few exceptions is the Progressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable. In this work, we furnish PDA with a descent … Read more

Toll Setting with Robust Wardrop Equilibrium Conditions Under Budgeted Uncertainty

We consider two variants of the toll-setting problem in which a traffic authority uses tolls either to maximize revenue or to alleviate bottlenecks in the traffic network. The users of the network are assumed to act according to Wardrop’s user equilibrium so that the overall toll-setting problems are modeled as mathematical problems with equilibrium constraints. … Read more

Factorized binary polynomial optimization

In binary polynomial optimization, the goal is to find a binary point maximizing a given polynomial function. In this paper, we propose a novel way of formulating this general optimization problem, which we call factorized binary polynomial optimization. In this formulation, we assume that the variables are partitioned into a fixed number of sets, and … Read more

A General Framework for Sequential Batch-Testing

We consider sequential testing problems that involve a system of \(n\) stochastic components, each of which is either working or faulty with independent probability. The overall state of the system is a function of the state of its individual components, and the goal is to determine the system state by testing its components at the … Read more

A Facial Reduction Algorithm for Standard Spectrahedra

Facial reduction is a pre-processing method aimed at reformulating a problem to ensure strict feasibility. The importance of constructing a robust model is widely recognized in the literature, and facial reduction has emerged an attractive approach for achieving robustness. In this note, we outline a facial reduction algorithm for a standard spectrahedra, the intersection of … Read more

Globally Convergent Derivative-Free Methods in Nonconvex Optimization with and without Noise

This paper addresses the study of nonconvex derivative-free optimization problems, where only information of either smooth objective functions or their noisy approximations is available. General derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with stepsizes and exact gradient values. … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce and expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this … Read more

Incorporating Service Reliability in Multi-depot Vehicle Scheduling: A Chance-Constrained Approach

The multi-depot vehicle scheduling problem (MDVSP) is a critical planning challenge for transit agencies. We introduce a novel approach to MDVSP by incorporating service reliability through chance-constrained programming (CCP), targeting the pivotal issue of travel time uncertainty and its impact on transit service quality. Our model guarantees service reliability measured by on-time performance (OTP), a … Read more

Benders decomposition with scaled cuts for multistage stochastic mixed-integer programs

We consider Benders decomposition algorithms for multistage stochastic mixed-integer programs (SMIPs) with general mixed-integer decision variables at every node in the scenario tree. We derive a hierarchy of convex polyhedral lower bounds for the value functions and expected cost to-go functions in multistage SMIPs using affine parametric cutting planes in extended spaces for the feasible … Read more