A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize for … Read more

Optimality, identifiability, and sensitivity

Around a solution of an optimization problem, an “identifiable” subset of the feasible region is one containing all nearby solutions after small perturbations to the problem. A quest for only the most essential ingredients of sensitivity analysis leads us to consider identifiable sets that are “minimal”. This new notion lays a broad and intuitive variational-analytic … Read more

Mixed Integer Linear Programming Formulation Techniques

A wide range of problems can be modeled as Mixed Integer Linear Programming (MIP) problems using standard formulation techniques. However, in some cases the resulting MIP can be either too weak or too large to be effectively solved by state of the art solvers. In this survey we review advanced MIP formulation techniques that result … Read more

Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions

We develop and analyze stochastic optimization algorithms for problems in which the expected loss is strongly convex, and the optimum is (approximately) sparse. Previous approaches are able to exploit only one of these two structures, yielding an $\order(\pdim/T)$ convergence rate for strongly convex objectives in $\pdim$ dimensions, and an $\order(\sqrt{(\spindex \log \pdim)/T})$ convergence rate when … Read more

An acceleration procedure for optimal first-order methods

We introduce in this paper an optimal first-order method that allows an easy and cheap evaluation of the local Lipschitz constant of the objective’s gradient. This constant must ideally be chosen at every iteration as small as possible, while serving in an indispensable upper bound for the value of the objective function. In the previously … Read more

Optimality conditions for the nonlinear programming problems on Riemannian manifolds

In recent years, many traditional optimization methods have been successfully generalized to minimize objective functions on manifolds. In this paper, we first extend the general traditional constrained optimization problem to a nonlinear programming problem built upon a general Riemannian manifold $\mathcal{M}$, and discuss the first-order and the second-order optimality conditions. By exploiting the differential geometry … Read more

Multi-Range Robust Optimization vs Stochastic Programming in Prioritizing Project Selection

This paper describes a multi-range robust optimization approach applied to the problem of capacity investment under uncertainty. In multi-range robust optimization, an uncertain parameter is allowed to take values from more than one uncertainty range. We consider a number of possible projects with anticipated costs and cash flows, and an investment decision to be made … Read more