Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only … Read more

Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-Concave Relaxations

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to epsilon-global optimality. The facets of low-dimensional (n < 4) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable ... Read more

A globally and R-linearly convergent hybrid HS and PRP method and its inexact version with applications

A hybrid HS and PRP type conjugate gradient method for smooth optimization is presented, which reduces to the classical RPR or HS method if exact linear search is used and converges globally and R-linearly for nonconvex functions with an inexact backtracking line search under standard assumption. An inexact version of the proposed method which admits … Read more

Robustifying Convex Risk Measures: A Non-Parametric Approach

We introduce a framework for robustifying portfolio selection problems with respect to ambiguity in the distribution of the random asset losses. In particular, we are interested in convex, version independent risk measures. To robustify these risk measures, we use an ambiguity set which is defined as a neighborhood around a reference probability measure which represents … Read more

Global Error bounds for systems of convex polynomials over polyhedral constraints

This paper is devoted to study the Lipschitzian/Holderian type global error bound for systems of many finitely convex polynomial inequalities over a polyhedral constraint. Firstly, for systems of this type, we show that under a suitable asymtotic qualification condition, the Lipschitzian type global error bound property is equivalent to the Abadie qualification condition, in particular, … Read more

On t-branch split cuts for mixed-integer programs

In this paper we study the t-branch split cuts introduced by Li and Richard (2008). They presented a family of mixed-integer programs with n integer variables and a single continuous variable and conjectured that the convex hull of integer solutions for any n has unbounded rank with respect to (n-1)-branch split cuts. It was shown … Read more

Informational validity of Fechtner’s experiments outcomes

All manifestations of dimensional harmony in nature and human practice are being always characterized by deviations from golden ratio that often makes their acceptance problematic. On the example of Fechner’s experiments the paper discusses the way of solving this problem, based on informational approach, according to which the informatively optimal permissible deviation from dimensional harmony … Read more

TACO – A Toolkit for AMPL Control Optimization

We describe a set of extensions to the AMPL modeling language to conveniently model mixed-integer optimal control problems for ODE or DAE dynamic processes. These extensions are realized as AMPL user functions and suffixes and do not require intrusive changes to the AMPL language standard or implementation itself. We describe and provide TACO, a Toolkit … Read more

A First-Order Smoothing Technique for a Class of Large-Scale Linear Programs

We study a class of linear programming (LP) problems motivated by large-scale machine learning applications. After reformulating the LP as a convex nonsmooth problem, we apply Nesterov’s primal-dual smoothing technique. It turns out that the iteration complexity of the smoothing technique depends on a parameter $\th$ that arises because we need to bound the originally … Read more

The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, … Read more