Large-Scale Semidefinite Programming via Saddle Point Mirror-Prox Algorithm

In this paper, we first develop “economical” representations for positive semidefinitness of well-structured sparse symmetric matrix. Using the representations, we then reformulate well-structured large-scale semidefinite problems into smooth convex-concave saddle point problems, which can be solved by a Prox-method with efficiency ${\cal O}(\epsilon^{-1})$ developed in \cite{Nem}. Some numerical implementations for large-scale Lovasz capacity and MAXCUT … Read more

SYNERGY ANALYSIS OF COLLABORATIVE SUPPLY CHAIN MANAGEMENT IN ENERGY SYSTEMS USING MULTI-PERIOD MILP

Energy, a fundamental entity of modern life, is usually produced using fossil fuels as the primary raw material. A consequence of burning fossil fuels is the emission of environmentally harmful substances. Energy production systems generate steam and electricity that are served to different process customers to satisfy their energy requirement. The improvement of economical and … Read more

A Mixed-Integer Programming Approach to Multi-Class Data Classification Problem

This paper presents a new data classification method based on mixed-integer programming. Traditional approaches that are based on partitioning the data sets into two groups perform poorly for multi-class data classification problems. The proposed approach is based on the use of hyper-boxes for defining boundaries of the classes that include all or some of the … Read more

Robustness in Combinatorial Optimization and Scheduling Theory: An Extended Annotated Bibliography

This extended annotated bibliography focuses on what has been published during the last ten years in the area of combinatorial optimization and scheduling theory concerning robustness and other similar techniques dealing with worst case optimization under uncertainty and non-accuracy of problem data CitationChristian-Albrechts University in Kiel, Institute of Production and Logistics, Working paper ArticleDownload View … Read more

Lagrange Multipliers with Optimal Sensitivity Properties

We consider optimization problems with inequality and abstract set constraints, and we derive sensitivity properties of Lagrange multipliers under very weak conditions. In particular, we do not assume uniqueness of a Lagrange multiplier or continuity of the perturbation function. We show that the Lagrange multiplier of minimum norm defines the optimal rate of improvement of … Read more

Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives

We consider a networked system defined on a graph where each edge corresponds to a quasilinear hyperbolic system with space dimension one. At the nodes, the system is governed by algebraic node conditions. The system is controlled at the nodes of the graph. Optimal control problems for systems of this type arise in the operation … Read more

The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm

Bundle adjustment using the Levenberg-Marquardt minimization algorithm is almost invariably used as the last step of every feature-based structure and motion estimation computer vision algorithm to obtain optimal 3D structure and viewing parameter estimates. However, due to the large number of unknowns contributing to the minimized reprojection error, a general purpose implementation of the Levenberg-Marquardt … Read more

Convergence of a hybrid projection-proximal point algorithm coupled with approximation methods in convex optimization

In order to minimize a closed convex function that is approximated by a sequence of better behaved functions, we investigate the global convergence of a generic diagonal hybrid algorithm, which consists of an inexact relaxed proximal point step followed by a suitable orthogonal projection onto a hyperplane. The latter permits to consider a fixed relative … Read more

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

The Generalized Assignment Problem (GAP) is a classic scheduling problem with many applications. We propose a branch-and-cut-and-price for that problem featuring a stabilization mechanism to accelerate column generation convergence. We also propose ellipsoidal cuts, a new way of transforming the exact algorithm into a powerful heuristic, in the same spirit of the cuts recently proposed … Read more

Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity

Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite programming (SDP) … Read more