SENSITIVITY ANALYSIS IN CONVEX QUADRATIC OPTIMIZATION: INVARIANT SUPPORT SET INTERVAL

In sensitivity analysis one wants to know how the problem and the optimal solutions change under the variation of the input data. We consider the case when variation happens in the right hand side of the constraints and/or in the linear term of the objective function. We are interested to find the range of the … Read more

Performance of CONDOR, a Parallel, Constrained extension of Powell’s UOBYQA algorithm. Experimental results and comparison with the DFO algorithm.

This paper presents an algorithmic extension of Powell’s UOBYQA algorithm (”Unconstrained Optimization BY Quadratical Approximation”). We start by summarizing the original algorithm of Powell and by presenting it in a more comprehensible form. Thereafter, we report comparative numerical results between UOBYQA, DFO and a parallel, constrained extension of UOBYQA that will be called in the … Read more

Adjustable Robust Optimization Models for Nonlinear Multi-Period Optimization

We study multi-period nonlinear optimization problems whose parameters are uncertain. We assume that uncertain parameters are revealed in stages and model them using the adjustable robust optimization approach. For problems with polytopic uncertainty, we show that quasi-convexity of the optimal value function of certain subproblems is sufficient for the reducibility of the resulting robust optimization … Read more

Robust Profit Opportunities in Risky Financial Portfolios

For risky financial securities with given expected return vector and covariance matrix, we propose the concept of a robust profit opportunity in single and multiple period settings. We show that the problem of finding the “most robust” profit opportunity can be solved as a convex quadratic programming problem, and investigate its relation to the Sharpe … Read more

Sensitivity of trust-region algorithms on their parameters

In this paper, we examine the sensitivity of trust-region algorithms on the parameters related to the step acceptance and update of the trust region. We show, in the context of unconstrained programming, that the numerical efficiency of these algorithms can easily be improved by choosing appropriate parameters. Recommanded ranges of values for these parameters are … Read more

Leader-Follower Equilibria for Electric Power and NO_x Allowances Markets

This paper investigates the ability of the largest producer in an electricity market to manipulate both the electricity and emission allowances markets to its advantage. A Stackelberg game to analyze this situation is constructed in which the largest firm plays the role of the leader, while the medium-sized firms are treated as Cournot followers with … Read more

Interior point methods for large-scale linear programming

We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned … Read more

Efficiency and Fairness of System-Optimal Routing with User Constraints

We study the route-guidance system proposed by Jahn, Möhring, Schulz and Stier-Moses (2004) from a theoretical perspective. This approach computes a traffic pattern that minimizes the total travel time subject to user constraints, which ensure that routes suggested to users are not much longer than shortest paths. We show that when distances are measured with … Read more

Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

A NEW SELF-CONCORDANT BARRIER FOR THE HYPERCUBE

In this paper we introduce a new barrier function $\sum\limits_{i=1}^n(2x_i-1)[\ln{x_i}-\ln(1-x_i)]$ to solve the following optimization problem: $\min\,\, f(x)$ subject to: $Ax=b;\;\;0\leq x\leq e$. We show that this function is a $(3/2)n$-self-concordant barrier on the hypercube $[0,1]^n$. We prove that the central path is well defined and that under an additional assumption on the objective function, … Read more