Recursive Approximation of the High Dimensional Max Function

An alternative smoothing method for the high dimensional $\max $ function has been studied. The proposed method is a recursive extension of the two dimensional smoothing functions. In order to analyze the proposed method, a theoretical framework related to smoothing methods has been discussed. Moreover, we support our discussion by considering some application areas. This … Read more

Multivariate Nonnegative Quadratic Mappings

In this paper we study several issues related to the characterization of specific classes of multivariate quadratic mappings that are nonnegative over a given domain, with nonnegativity defined by a pre-specified conic order. In particular, we consider the set (cone) of nonnegative quadratic mappings defined with respect to the positive semidefinite matrix cone, and study … Read more

PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems

PHoM is a software package in C++ for finding all isolated solutions of polynomial systems using a polyhedral homotopy continuation method. Among three modules constituting the package, the first module StartSystem constructs a family of polyhedral-linear homotopy functions, based on the polyhedral homotopy theory, from input data for a given system of polynomial equations $\f(\x) … Read more

First- and Second-Order Methods for Semidefinite Programming

In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have … Read more

Location and design of a competitive facility for profit maximisation

A single facility has to be located in competition with fixed existing facilities of similar type. Demand is supposed to be concentrated at a finite number of points, and consumers patronise the facility to which they are attracted most. Attraction is expressed by some function of the quality of the facility and its distance to … Read more

An Efficient Exact Algorithm for the Vertex hBcCenter Problem and Computational Experiments for Different Set Covering Subproblems

We develop a simple and yet very efficient exact algorithm for the problem of locating $p$ facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility to which it is assigned. The algorithm iteratively sets a maximum distance value within which it tries to assign all … Read more

On Robust 0-1 Optimization with Uncertain Cost Coefficients

Based on the recent approach of Bertsimas and Sim \cite{bs1, bs2} to robust optimization in the presence of data uncertainty, we prove a bound on the probability that the robust solution gives an objective function value worse than the robust objective function value, under the assumption that only cost coefficients are subject to uncertainty. A … Read more

A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization

We introduce an algorithm to minimize a function of several variables with no convexity nor smoothness assumptions. The main peculiarity of our approach is the use of an the objective function model which is the difference of two piecewise affine convex functions. Bundling and trust region concepts are embedded into the algorithm. Convergence of the … Read more

The stable set problem and the lift-and-project ranks of graphs

We study the lift-and-project procedures for solving combinatorial optimization problems, as described by Lov\’asz and Schrijver, in the context of the stable set problem on graphs. We investigate how the procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivision of an edge and the subdivision of a star operations … Read more

Semidefinite programming and integer programming

We survey how semidefinite programming can be used for finding good approximative solutions to hard combinatorial optimization problems. Citation Preliminary version appeared as Report PNA-R0210, CWI, Amsterdam, April 2002. To appear as Chapter in the Handbook on Discrete Optimization, K. Aardal, G. Nemhauser, R. Weismantel, eds., Elsevier Publishers. Article Download View Semidefinite programming and integer … Read more