Lower bounds for Chvátal-Gomory style operators

Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that … Read more

Cuts over Extended Formulations by Flow Discretization

Large-sized extended formulations have the potential for providing high-quality bounds on some combinatorial optimization problems where the natural formulations perform poorly. This chapter discusses the use of some families of cuts that have been recently applied on extended formulations that are obtained by the discretization of the continuous variables occurring in the natural formulation of … Read more

Algorithimic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

We study a mixed integer linear program with $m$ integer variables and $k$ non-negative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [\emph{Inequalities from two rows of a simplex tableau}, Proc.\ IPCO 2007, LNCS, vol.~4513, Springer, pp.~1–15]. We describe the facets of … Read more

Complexity results for the gap inequalities for the max-cut problem

In 1996, Laurent and Poljak introduced an extremely general class of cutting planes for the max-cut problem, called gap inequalities. We prove several results about them, including the following: (i) there must exist non-dominated gap inequalities with gap larger than 1, unless NP = co-NP; (ii) there must exist non-dominated gap inequalities with exponentially large … Read more

Strong Dual for Conic Mixed-Integer Programs

Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we are able … Read more

Solving Mixed Integer Bilinear Problems using MILP formulations

In this paper, we examine a mixed integer linear programming (MIP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to … Read more

Implementing the simplex method as a cutting-plane method

We show that the simplex method can be interpreted as a cutting-plane method, assumed that a special pricing rule is used. This approach is motivated by the recent success of the cutting-plane method in the solution of special stochastic programming problems. We compare the classic Dantzig pricing rule and the rule that derives from the … Read more

Coordinated cutting plane generation via multi-objective separation

In cutting plane methods, the question of how to generate the “best possible” set of cuts is both central and crucial. We propose a lexicographic multi-objective cutting plane generation scheme that generates, among all the maximally violated valid inequalities of a given family, an inequality that is undominated and maximally diverse w.r.t. the cuts that … Read more

Solving Two-stage Robust Optimization Problems by A Constraint-and-Column Generation Method

We present a constraint-and-column generation algorithm to solve two-stage robust optimization problems. Compared with existing Benders style cutting plane methods, it is a general procedure with a unified approach to deal with optimality and feasibility. A computational study on a two-stage robust location-transportation problem shows that it performs an order of magnitude faster. Also, it … Read more

Design and Verify: A New Scheme for Generating Cutting-Planes

A cutting-plane procedure for integer programming (IP) problems usually involves invoking a black-box procedure (such as the Gomory-Chvatal (GC) procedure) to compute a cutting-plane. In this paper, we describe an alternative paradigm of using the same cutting-plane black-box. This involves two steps. In the first step, we design an inequality cx = d + 1\} … Read more