Maximum Likelihood Probability Measures over Sets and Applications to Data-Driven Optimization

Motivated by data-driven approaches to sequential decision-making under uncertainty, we study maximum likelihood estimation of a distribution over a general measurable space when, unlike traditional setups, realizations of the underlying uncertainty are not directly observable but instead are known to lie within observable sets. While extant work studied the special cases when the observed sets … Read more

Optimized Dimensionality Reduction for Moment-based Distributionally Robust Optimization

Moment-based distributionally robust optimization (DRO) provides an optimization framework to integrate statistical information with traditional optimization approaches. Under this framework, one assumes that the underlying joint distribution of random parameters runs in a distributional ambiguity set constructed by moment information and makes decisions against the worst-case distribution within the set. Although most moment-based DRO problems … Read more

Differential Privacy via Distributionally Robust Optimization

In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they … Read more

A Fully Adaptive DRO Multistage Framework Based on MDR for Generation Scheduling under Uncertainty

The growing proliferation of wind power into the power grid achieves a low-cost sustainable electricity supply while introducing technical challenges with associated intermittency. This paper proposes a fully adaptive distributionally robust multistage framework based on mixed decision rules (MDR) for generation scheduling under uncertainty to adapt wind power respecting non-anticipativity in quick-start unit status decision … Read more

Data-Driven Stochastic Dual Dynamic Programming: Performance Guarantees and Regularization Schemes

We propose a data-driven extension of the stochastic dual dynamic programming (SDDP) algorithm for multistage stochastic linear programs under a continuous-state, non-stationary Markov data process. Unlike traditional SDDP methods—which often assume a known probability distribution, stagewise independent data process, or uncertainty restricted to the right-hand side of constraints—our approach overcomes these limitations, making it more … Read more

Distributionally Robust Optimal Allocation with Costly Verification

We consider the mechanism design problem of a principal allocating a single good to one of several agents without monetary transfers. Each agent desires the good and uses it to create value for the principal. We designate this value as the agent’s private type. Even though the principal does not know the agents’ types, she … Read more

Decision Rule Approaches for Pessimistic Bilevel Linear Programs under Moment Ambiguity with Facility Location Applications

We study a pessimistic stochastic bilevel program in the context of sequential two-player games, where the leader makes a binary here-and-now decision, and the follower responds a continuous wait-and-see decision after observing the leader’s action and revelation of uncertainty. Only the information of the mean, covariance, and support is known. We formulate the problem as … Read more

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Adjusted Distributionally Robust Bounds on Expected Loss Functions

Optimization problems in operations and finance often include a cost that is proportional to the expected amount by which a random variable exceeds some fixed quantity, known as the expected loss function. Representation of this function often leads to computational challenges, depending on the distribution of the random variable of interest. Moreover, in practice, a … Read more

Wasserstein Logistic Regression with Mixed Features

Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (i.e., numerical and categorical) features, despite amounting … Read more