Outer Approximation for Integer Nonlinear Programs via Decision Diagrams

As an alternative to traditional integer programming (IP), decision diagrams (DDs) provide a new solution technology for discrete problems based on their combinatorial structure and dynamic programming representation. While the literature mainly focuses on the competitive aspects of DDs as a stand-alone solver, we investigate their complementary role by studying IP techniques that can be … Read more

Stochastic dual dynamic programming with stagewise dependent objective uncertainty

We present a new algorithm for solving linear multistage stochastic programming problems with objective function coefficients modeled as a stochastic process. This algorithm overcomes the difficulties of existing methods which require discretization. Using an argument based on the finiteness of the set of possible cuts, we prove that the algorithm converges almost surely. Finally, we … Read more

A deterministic algorithm for solving stochastic minimax dynamic programmes

In this paper, we present an algorithm for solving stochastic minimax dynamic programmes where state and action sets are convex and compact. A feature of the formulations studied is the simultaneous non-rectangularity of both `min’ and `max’ feasibility sets. We begin by presenting convex programming upper and lower bound representations of saddle functions — extending … Read more

Approximations to Stochastic Dynamic Programs via Information Relaxation Duality

In the analysis of complex stochastic dynamic programs, we often seek strong theoretical guarantees on the suboptimality of heuristic policies. One technique for obtaining performance bounds is perfect information analysis: this approach provides bounds on the performance of an optimal policy by considering a decision maker who has access to the outcomes of all future … Read more

Generalized Dual Dynamic Programming for Infinite Horizon Problems in Continuous State and Action Spaces

We describe a nonlinear generalization of dual dynamic programming theory and its application to value function estimation for deterministic control problems over continuous state and action (or input) spaces, in a discrete-time infinite horizon setting. We prove that the result of a one-stage policy evaluation can be used to produce nonlinear lower bounds on the … Read more

Modeling Time-dependent Randomness in Stochastic Dual Dynamic Programming

We consider the multistage stochastic programming problem where uncertainty enters the right-hand sides of the problem. Stochastic Dual Dynamic Programming (SDDP) is a popular method to solve such problems under the assumption that the random data process is stagewise independent. There exist two approaches to incorporate dependence into SDDP. One approach is to model the … Read more

Dynamic Relaxations for Online Bipartite Matching

Online bipartite matching (OBM) is a fundamental model underpinning many important applications, including search engine advertisement, website banner and pop-up ads, and ride-hailing. We study the i.i.d. OBM problem, where one side of the bipartition is fixed and known in advance, while nodes from the other side appear sequentially as i.i.d. realizations of an underlying … Read more

Joint Inventory and Revenue Management with Removal Decisions

We study the problem of a retailer that maximizes profit through joint replenishment, pricing and removal decisions. This problem is motivated by the observation that retailers usually retain rights to remove inventory from their network either by returning it to the suppliers or through liquidation in the face of random demand and capacity constraints. We … Read more

Integer Optimization with Penalized Fractional Values: The Knapsack Case

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of … Read more

A deterministic algorithm for solving multistage stochastic programming problems

Multistage stochastic programming problems are an important class of optimisation problems, especially in energy planning and scheduling. These problems and their solution methods have been of particular interest to researchers in stochastic programming recently. Because of the large scenario trees that these problems induce, current solution methods require random sampling of the tree in order … Read more