Algebraic rules for quadratic regularization of Newton’s method

In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence properties of this class of methods are analysed. We show that if the … Read more

An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization

We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the … Read more

Convergence of trust-region methods based on probabilistic models

In this paper we consider the use of probabilistic or random models within a classical trust-region framework for optimization of deterministic smooth general nonlinear functions. Our method and setting differs from many stochastic optimization approaches in two principal ways. Firstly, we assume that the value of the function itself can be computed without noise, in … Read more

Globally convergent DC trust-region methods

In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of … Read more

A New Error Bound Result for Generalized Nash Equilibrium Problems and its Algorithmic Application

We present a new algorithm for the solution of Generalized Nash Equilibrium Problems. This hybrid method combines the robustness of a potential reduction algorithm and the local quadratic convergence rate of the LP-Newton method. We base our local convergence theory on an error bound and provide a new sufficient condition for it to hold that … Read more

An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming

In this paper, we consider an interior point method for nonlinear semidefinite programming. Yamashita, Yabe and Harada presented a primal-dual interior point method in which a nondifferentiable merit function was used. By using shifted barrier KKT conditions, we propose a differentiable primal-dual merit function within the framework of the line search strategy, and prove the … Read more

A Framework of Constraint Preserving Update Schemes for Optimization on Stiefel Manifold

This paper considers optimization problems on the Stiefel manifold $X^TX=I_p$, where $X\in \mathbb{R}^{n \times p}$ is the variable and $I_p$ is the $p$-by-$p$ identity matrix. A framework of constraint preserving update schemes is proposed by decomposing each feasible point into the range space of $X$ and the null space of $X^T$. While this general framework … Read more

Alternating Proximal Gradient Method for Convex Minimization

In this paper, we propose an alternating proximal gradient method that solves convex minimization problems with three or more separable blocks in the objective function. Our method is based on the framework of alternating direction method of multipliers. The main computational effort in each iteration of the proposed method is to compute the proximal mappings … Read more

Proximal Point Method for Minimizing Quasiconvex Locally Lipschitz Functions on Hadamard Manifolds

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex locally Lipschitz objective functions on Hadamard manifolds. To reach this goal, we use the concept of Clarke subdifferential on Hadamard manifolds and assuming that the function is bounded from below, we prove the global convergence of the … Read more

Globally Convergent Evolution Strategies and CMA-ES

In this paper we show how to modify a large class of evolution strategies (ES) to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombine the parents by means of a weighted sum, around which the offsprings are computed by … Read more