Information Geometry and Interior-Point Algorithms in SDP and Symmetric Cone Programs

This paper is a continuation of the paper Kakihara, Ohara and Tsuchiya by the authors where they demonstrated that the number of iterations of Mizuno-Todd-Ye predictor-corrector primal-dual interior-point methods for SDP and more generally symmetric cone programs is (asymptotically) expressed with an integral over the central trajectory called “curvature integral.” It was shown that the … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more

A Simple Variant of the Mizuno-Todd-Ye Predictor-Corrector Algorithm and its Objective-Function-Free Complexity

In this paper, we propose a simple variant of the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming problem (LP). Our variant executes a natural finite termination procedure at each iteration and it is easy to implement the algorithm. Our algorithm admits an objective-function free polynomial-time complexity when it is applied to LPs whose dual feasible region … Read more

A Note on the Implementation of an Interior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations

This paper describes an implementation of an interior-point algorithm for large-scale nonlinear optimization. It is based on the algorithm proposed by Curtis et al. (SIAM J Sci Comput 32:3447–3475, 2010), a method that possesses global convergence guarantees to first-order stationary points with the novel feature that inexact search direction calculations are allowed in order to … Read more

Interior-Point Algorithms for a Generalization of Linear Programming and Weighted Centering

We consider an extension of ordinary linear programming (LP) that adds weighted logarithmic barrier terms for some variables. The resulting problem generalizes both LP and the problem of finding the weighted analytic center of a polytope. We show that the problem has a dual of the same form and give complexity results for several different … Read more

New developments in the primal-dual column generation technique

The classical column generation is based on optimal solutions of the restricted master problems. This strategy frequently results in an unstable behaviour and may require an unnecessarily large number of iterations. To overcome this weakness, variations of the classical approach use interior points of the dual feasible set, instead of optimal solutions. In this paper, … Read more

The central curve in linear programming

The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming

In this paper, ellipse is used to approximate the central path of the linear programming. An interior-point algorithm is devised to search the optimizers along the ellipse. The algorithm is proved to be polynomial with the complexity bound $O(n^{\frac{1}{2}}\log(1/\epsilon))$. Numerical test is conducted for problems in Netlib. For most tested Netlib problems, the result shows … Read more

A Robust Algorithm for Semidefinite Programming

Current successful methods for solving semidefinite programs, SDP, are based on primal-dual interior-point approaches. These usually involve a symmetrization step to allow for application of Newton’s method followed by block elimination to reduce the size of the Newton equation. Both these steps create ill-conditioning in the Newton equation and singularity of the Jacobian of the … Read more

Using the analytic center in the feasibility pump

The feasibility pump (FP) [5,7] has proved to be a successful heuristic for finding feasible solutions of mixed integer linear problems (MILPs). FP was improved in [1] for finding better quality solutions. Briefly, FP alternates between two sequences of points: one of feasible so- lutions for the relaxed problem (but not integer), and another of … Read more