Solving multi-objective network flow problems with an interior point method

In this paper we present a primal-dual interior-point algorithm to solve a class of multi-objective network flow problems. More precisely, our algorithm is an extension of the single-objective primal-dual infeasible and inexact interior point method for multi-objective linear network flow problems. A comparison with standard interior point methods is provided and experimental results on bi-objective … Read more

Full Nesterov-Todd Step Interior-Point Methods for Symmetric Optimization

Some Jordan algebras were proved more than a decade ago to be an indispensable tool in the unified study of interior-point methods. By using it, we generalize the infeasible interior-point method for linear optimization of Roos [SIAM J. Optim., 16(4):1110–1136 (electronic), 2006] to symmetric optimization. This unifies the analysis for linear, second-order cone and semidefinite … Read more

A globally convergent primal-dual interior-point 3D filter method for nonlinear SDP

This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite programming, which is the first multidimensional (three-dimensional) filter methods for interior-point methods, and of course for constrained optimization. A freshly new definition of filter entries is proposed, which is greatly different from those in all the current filter methods. A mixed norm is used … Read more

A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results

In this paper we modify the original primal-dual interior-point filter method proposed in [18] for the solution of nonlinear programming problems. We introduce two new optimality filter entries based on the objective function, and thus better suited for the purposes of minimization, and propose conditions for using inexact Hessians. We show that the global convergence … Read more

A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with (\sqrt{n}\log{\frac{{\rm Tr}(X^0S^0)}{\epsilon}})$ iteration complexity

In this paper, we extend the Ai-Zhang direction to the class of semidefinite optimization problems. We define a new wide neighborhood $\N(\tau_1,\tau_2,\eta)$ and, as usual, we utilize symmetric directions by scaling the Newton equation with special matrices. After defining the “positive part” and the “negative part” of a symmetric matrix, we solve the Newton equation … Read more

An Analysis of Weighted Least Squares Method and Layered Least Squares Method with the Basis Block Lower Triangular Matrix Form

In this paper, we analyze the limiting behavior of the weighted least squares problem $\min_{x\in\Re^n}\sum_{i=1}^p\|D_i(A_ix-b_i)\|^2$, where each $D_i$ is a positive definite diagonal matrix. We consider the situation where the magnitude of the weights are drastically different block-wisely so that $\max(D_1)\geq\min(D_1) \gg \max(D_2) \geq \min(D_2) \gg \max(D_3) \geq \ldots \gg \max(D_{p-1}) \geq \min(D_{p-1}) \gg \max(D_p)$. … Read more

On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods

The solution of KKT systems is ubiquitous in optimization methods and often dominates the computation time, especially when large-scale problems are considered. Thus, the effective implementation of such methods is highly dependent on the availability of effective linear algebra algorithms and software, that are able, in turn, to take into account specific needs of optimization. … Read more

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the ScaLAPACK library. A new feature is implemented to deal with … Read more

Homogeneous algorithms for monotone complementarity problems over symmetric cones

In \cite{aYOSHISE06}, the author proposed a homogeneous model for standard monotone nonlinear complementarity problems over symmetric cones and show that the following properties hold: (a) There is a path that is bounded and has a trivial starting point without any regularity assumption concerning the existence of feasible or strictly feasible solutions. (b) Any accumulation point … Read more

On a class of superlinearly convergent polynomial time interior point methods for sufficient LCP

A new class of infeasible interior point methods for solving sufficient linear complementarity problems requiring one matrix factorization and $m$ backsolves at each iteration is proposed and analyzed. The algorithms from this class use a large $(\caln_\infty^-$) neighborhood of an infeasible central path associated with the complementarity problem and an initial positive, but not necessarily … Read more