Optimization of univariate functions on bounded intervals by interpolation and semidefinite programming

We consider the problem of minimizing a univariate, real-valued function f on an interval [a,b]. When f is a polynomial, we review how this problem may be reformulated as a semidefinite programming (SDP) problem, and review how to extract all global minimizers from the solution of the SDP problem. For general f, we approximate the … Read more

When LP is not a good idea – using structure in polyhedral optimization problems

It has been known for almost 50 years that the discrete l_1 approximation problem can be solved effectively by linear programming. However, improved algorithms involve a step which can be interpreted as a line search, and which is not part of the standard LP solution procedures. l_1 provides the simplest example of a class of … Read more

A Local Convergence Theory of a Filter Line Search Method for Nonlinear Programming

In this paper the theory of local convergence for a class of line search filter type methods for nonlinear programming is presented. The algorithm presented here is globally convergent (see Chin [4]) and the rate of convergence is two-step superlinear. The proposed algorithm solves a sequence of quadratic progrmming subproblems to obtain search directions and … Read more

A Global Convergence Theory of a Filter Line Search Method for Nonlinear Programming

A framework for proving global convergence for a class of line search filter type methods for nonlinear programming is presented. The underlying method is based on the dominance concept of multiobjective optimization where trial points are accepted provided there is a sufficient decrease in the objective function or constraints violation function. The proposed methods solve … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

A truncated SQP algorithm for solving nonconvex equality constrained optimization problems

An algorithm for solving equality constrained optimization problems is proposed. It can deal with nonconvex functions and uses a truncated conjugate algorithm for detecting nonconvexity. The algorithm ensures convergence from remote starting point by using line-search. Numerical experiments are reported, comparing the approach with the one implemented in the trust region codes ETR and Knitro. … Read more

Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming

Line search methods for nonlinear programming using Fletcher and Leyffer’s filter method, which replaces the traditional merit function, are proposed and their global and local convergence properties are analyzed. Previous theoretical work on filter methods has considered trust region algorithms and only the question of global convergence. The presented framework is applied to barrier interior … Read more

A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach

This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of … Read more