Enhancing large neighbourhood search heuristics for Benders’ decomposition

A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search … Read more

An Online-Learning Approach to Inverse Optimization

In this paper, we demonstrate how to learn the objective function of a decision-maker while only observing the problem input data and the decision-maker’s corresponding decisions over multiple rounds. Our approach is based on online learning and works for linear objectives over arbitrary feasible sets for which we have a linear optimization oracle. As such, … Read more

Robust Multi-product Newsvendor Model with Substitution under Cardinality-constrained Uncertainty Set

This work studies a Robust Multi-product Newsvendor Model with Substitution (R-MNMS), where the demand and the substitution rates are stochastic and are subject to cardinality-constrained uncertainty sets. The goal of this work is to determine the optimal order quantities of multiple products to maximize the worst-case total profit. To achieve this, we first show that … Read more

Data-Driven Maintenance and Operations Scheduling in Power Systems under Decision-Dependent Uncertainty

Generator maintenance scheduling plays a pivotal role in ensuring uncompromising operations of power systems. There exists a tight coupling between the condition of the generators and corresponding operational schedules, significantly affecting reliability of the system. In this study, we effectively model and solve an integrated condition-based maintenance and operations scheduling problem for a fleet of … Read more

Learning a Mixture of Gaussians via Mixed Integer Optimization

We consider the problem of estimating the parameters of a multivariate Gaussian mixture model (GMM) given access to $n$ samples $\x_1,\x_2,\ldots ,\x_n \in\mathbb{R}^d$ that are believed to have come from a mixture of multiple subpopulations. State-of-the-art algorithms used to recover these parameters use heuristics to either maximize the log-likelihood of the sample or try to … Read more

Analysis of Models for the Stochastic Outpatient Procedure Scheduling Problem

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of procedures for a single provider, where each procedure has a known type and associated probability distribution of random duration. Our objective is to minimize the expectation … Read more

A Branch-and-Cut Algorithm for Solving Mixed-integer Semidefinite Optimization Problems

This paper is concerned with a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite constraint is relaxed, and the resultant mixed-integer linear optimization problem is repeatedly solved with valid inequalities for the relaxed constraint. We prove convergence properties of the algorithm. Moreover, to speed up the computation, we … Read more

A mixed-integer fractional optimization approach to best subset selection

We consider the best subset selection problem in linear regression, i.e., finding a parsimonious subset of the regression variables that provides the best fit to the data according to some predefined criterion. We show that, for a broad range of criteria used in the statistics literature, the best subset selection problem can be modeled as … Read more

Mixed-integer bilevel representability

We study the representability of sets that admit extended formulations using mixed-integer bilevel programs. We show that feasible regions modeled by continuous bilevel constraints (with no integer variables), complementarity constraints, and polyhedral reverse convex constraints are all finite unions of polyhedra. Conversely, any finite union of polyhedra can be represented using any one of these … Read more

Split cuts from sparse disjunctions

Split cuts are arguably the most effective class of cutting planes within a branch-and-cut framework for solving general Mixed-Integer Programs (MIP). Sparsity, on the other hand, is a common characteristic of MIP problems, and it is an important part of why the simplex method works so well inside branch-and-cut. In this work, we evaluate the … Read more