A simple Newton method for local nonsmooth optimization

Superlinear convergence has been an elusive goal for black-box nonsmooth optimization. Even in the convex case, the subgradient method is very slow, and while some cutting plane algorithms, including traditional bundle methods, are popular in practice, local convergence is still sluggish. Faster variants depend either on problem structure or on analyses that elide sequences of … Read more

Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms

One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

We study the class of nonsmooth nonconvex problems in which the objective is to minimize the difference between a continuously differentiable function (possibly nonconvex) and a convex (possibly nonsmooth) function over a convex polytope. This general class contains many types of problems, including difference of convex functions (DC) problems, and as such, can be used … Read more

On the Convergence of Asynchronous Parallel Iteration with Arbitrary Delays

Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call \emph{delay}, is the number of times it has been … Read more

An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. In particular, the proposed method enables … Read more

The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM

We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known rates of convergence — among … Read more

The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems

We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonconvex nonsmooth optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential updates … Read more

An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a filter line-search algorithm that does not require inertia information about the linear system to ensure global convergence. The proposed approach performs curvature tests along the search step to ensure descent. This feature permits more modularity in the linear algebra, enabling the use of a wider range of iterative and decomposition strategies. We … Read more

Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, … Read more

Nonsmooth Optimization via BFGS

We investigate the BFGS algorithm with an inexact line search when applied to nonsmooth functions, not necessarily convex. We define a suitable line search and show that it generates a sequence of nested intervals containing points satisfying the Armijo and weak Wolfe conditions, assuming only absolute continuity. We also prove that the line search terminates … Read more