Inner Conditions for Error Bounds and Metric Subregulerity of Multifunctions

We introduce a new class of sets, functions and multifunctions which is shown to be large and to enjoy some nice common properties with the convex setting. Error bounds for objects attached to this class are characterized in terms of inner conditions of Abadie’s type, that is conditions bearing on normal cones and coderivatives at … Read more

Optimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimization

Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-order criticality and its evaluation complexity is analyzed as a function of the choice (among existing methods) of an inner algorithm for solving subproblems in … Read more

Optimality conditions for problems over symmetric cones and a simple augmented Lagrangian method

In this work we are interested in nonlinear symmetric cone problems (NSCPs), which contain as special cases nonlinear semidefinite programming, nonlinear second order cone programming and the classical nonlinear programming problems. We explore the possibility of reformulating NSCPs as common nonlinear programs (NLPs), with the aid of squared slack variables. Through this connection, we show … Read more

Optimality conditions for nonlinear semidefinite programming via squared slack variables

In this work, we derive second-order optimality conditions for nonlinear semidefinite programming (NSDP) problems, by reformulating it as an ordinary nonlinear programming problem using squared slack variables. We first consider the correspondence between Karush-Kuhn-Tucker points and regularity conditions for the general NSDP and its reformulation via slack variables. Then, we obtain a pair of “no-gap” … Read more

Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization

Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality condition holds at a point that satisfies the … Read more

Nonlinear chance constrained problems: optimality conditions, regularization and solvers

We deal with chance constrained problems (CCP) with differentiable nonlinear random functions and discrete distribution. We allow nonconvex functions both in the constraints and in the objective. We reformulate the problem as a mixed-integer nonlinear program, and relax the integer variables into continuous ones. We approach the relaxed problem as a mathematical problem with complementarity … Read more

A cone-continuity constraint qualification and algorithmic consequences

Every local minimizer of a smooth constrained optimization problem satisfies the sequential Approximate Karush-Kuhn-Tucker (AKKT) condition. This optimality condition is used to define the stopping criteria of many practical nonlinear programming algorithms. It is natural to ask for conditions on the constraints under which AKKT implies KKT. These conditions will be called Strict Constraint Qualifications … Read more

Solving ill-posed bilevel programs

This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to … Read more

Decomposition theorems for linear programs

It is well known that any feasible arc-flow solution to a network problem defined on a graph $G = (N, A)$, where $N$ is the set of nodes whereas $A$ is the set of arcs, can be expressed using at most $|A| + |N|$ paths and cycles having nonzero flow, out of these, at most … Read more

An elementary proof of linear programming optimality conditions without using Farkas’ lemma

Although it is easy to prove the sufficient conditions for optimality of a linear program, the necessary conditions pose a pedagogical challenge. A widespread practice in deriving the necessary conditions is to invoke Farkas’ lemma, but proofs of Farkas’ lemma typically involve “nonlinear” topics such as separating hyperplanes between disjoint convex sets, or else more … Read more