Online First-Order Framework for Robust Convex Optimization

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or … Read more

Multi-Period Portfolio Optimization: Translation of Autocorrelation Risk to Excess Variance

Growth-optimal portfolios are guaranteed to accumulate higher wealth than any other investment strategy in the long run. However, they tend to be risky in the short term. For serially uncorrelated markets, similar portfolios with more robust guarantees have been recently proposed. This paper extends these robust portfolios by accommodating non-zero autocorrelations that may reflect investors’ … Read more

Scalable Robust and Adaptive Inventory Routing

We consider the finite horizon inventory routing problem with uncertain demand, where a supplier must deliver a particular commodity to its customers periodically, such that even under uncertain demand the customers do not stock out, e.g. supplying residential heating oil to customers. Current techniques that solve this problem with stochastic demand, robust or adaptive optimization … Read more

A stochastic program with tractable time series and affine decision rules for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation for the reservoir management problem. Our problem specifically consists in minimizing the risk of floods over a fixed time horizon for a multi-dimensional hydro-electrical complex. We consider well-studied linear time series model and enhance the approach to consider heteroscedasticity. Using these stochastic processes under very general distributional … Read more

Multistage Robust Unit Commitment with Dynamic Uncertainty Sets and Energy Storage

The deep penetration of wind and solar power is a critical component of the future power grid. However, the intermittency and stochasticity of these renewable resources bring significant challenges to the reliable and economic operation of power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the unit commitment (UC) … Read more

Adaptive Distributionally Robust Optimization

We develop a modular and tractable framework for solving an adaptive distributionally robust linear opti- mization problem, where we minimize the worst-case expected cost over an ambiguity set of probability dis- tributions. The adaptive distrbutaionally robust optimization framework caters for dynamic decision making, where decisions can adapt to the uncertain outcomes as they unfold in … Read more

A dynamic programming approach for a class of robust optimization problems

Common approaches to solve a robust optimization problem decompose the problem into a master problem (MP) and adversarial separation problems (APs). MP contains the original robust constraints, however written only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope … Read more

Min-max-min Robust Combinatorial Optimization Subject to Discrete Uncertainty

We consider combinatorial optimization problems with uncertain objective functions. In the min-max-min robust optimization approach, a fixed number k of feasible solutions is computed such that the respective best of them is optimal in the worst case. The idea is to calculate a set of candidate solutions in a potentially expensive preprocessing and then select … Read more

Robust optimization of dose-volume metrics for prostate HDR-brachytherapy incorporating target- and OAR volume delineation uncertainties

In radiation therapy planning, uncertainties in target volume definition yield a risk of underdosing the tumor. The classical way to prevent this in the context of external beam radiotherapy (EBRT) has been to expand the clinical target volume (CTV) with an isotropic margin to obtain the planning target volume (PTV). However, the EBRT-based PTV concept … Read more

Piecewise static policies for two-stage adjustable robust linear optimization problems under uncertainty

In this paper, we consider two-stage adjustable robust linear optimization problems under uncertain constraints and study the performance of piecewise static policies. These are a generalization of static policies where we divide the uncertainty set into several pieces and specify a static solution for each piece. We show that in general there is no piecewise … Read more