Exploiting Problem Structure in Optimization under Uncertainty via Online Convex Optimization

In this paper, we consider two paradigms that are developed to account for uncertainty in optimization models: robust optimization (RO) and joint estimation-optimization (JEO). We examine recent developments on efficient and scalable iterative first-order methods for these problems, and show that these iterative methods can be viewed through the lens of online convex optimization (OCO). … Read more

Online First-Order Framework for Robust Convex Optimization

Robust optimization (RO) has emerged as one of the leading paradigms to efficiently model parameter uncertainty. The recent connections between RO and problems in statistics and machine learning domains demand for solving RO problems in ever more larger scale. However, the traditional approaches for solving RO formulations based on building and solving robust counterparts or … Read more

A Subgradient Method for Free Material Design

A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into … Read more

Gradient Descent only Converges to Minimizers

We show that gradient descent converges to a local minimizer, almost surely with random initialization. This is proved by applying the Stable Manifold Theorem from dynamical systems theory. Article Download View Gradient Descent only Converges to Minimizers

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems

The primal-dual hybrid gradient method (PDHG) originates from the Arrow-Hurwicz method, and it has been widely used to solve saddle point problems, particularly in image processing areas. With the introduction of a combination parameter, Chambolle and Pock proposed a generalized PDHG scheme with both theoretical and numerical advantages. It has been analyzed that except for … Read more

An accelerated non-Euclidean hybrid proximal extragradient-type Algorithm for convex-concave saddle-point Problems

This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm presented … Read more

A basis-free null space method for solving generalized saddle point problems

Using an augmented Lagrangian matrix approach, we analytically solve in this paper a broad class of linear systems that includes symmetric and nonsymmetric problems in saddle point form. To this end, some mild assumptions are made and a preconditioning is specially designed to improve the sensitivity of the systems before the calculation of their solutions. … Read more

An O(1/k) Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing $\phi(Bu)+H(u)$ where $H$ and $\phi$ are convex functions, and $\phi$ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of … Read more

Randomized First-order Methods for Saddle Point Optimization

In this paper, we present novel randomized algorithms for solving saddle point problems whose dual feasible region is a direct product of many convex sets. Our algorithms can achieve ${\cal O}(1/N)$ rate of convergence by solving only one dual subproblem at each iteration. Our algorithms can also achieve ${\cal O}(1/N^2)$ rate of convergence if a … Read more

Convergence Analysis of Primal-Dual Based Methods for Total Variation Minimization with Finite Element Approximation

We consider the total variation minimization model with consistent finite element discretization. It has been shown in the literature that this model can be reformulated as a saddle-point problem and be efficiently solved by the primal-dual method. The convergence for this application of the primal-dual method has also been analyzed. In this paper, we focus … Read more