On the ergodic convergence rates of a first-order primal-dual algorithm

We revisit the proofs of convergence for a first order primal-dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. Article Download View On the ergodic convergence rates of a first-order primal-dual algorithm

Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems

We address the problem of preconditioning a sequence of saddle point linear systems arising in the solution of PDE-constrained optimal control problems via active-set Newton methods, with control and (regularized) state constraints. We present two new preconditioners based on a full block matrix factorization of the Schur complement of the Jacobian matrices, where the active-set … Read more

An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems

This article proposes a new algorithm for solving a class of composite convex-concave saddle-point problems. The new algorithm is a special instance of the hybrid proximal extragradient framework in which a Nesterov’s accelerated variant is used to approximately solve the prox subproblems. One of the advantages of the new method is that it works for … Read more

A note on Fejér-monotone sequences in product spaces and its applications to the dual convergence of augmented Lagrangian methods

In a recent Math. Program. paper, Eckstein and Silva proposed a new error criterion for the approximate solutions of augmented Lagrangian subproblems. Based on a saddle-point formulation of the primal and dual problems, they proved that dual sequences generated by augmented Lagrangians under this error criterion are bounded and that theirs limit points are dual … Read more

Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems

This article considers the two-player composite Nash equilibrium (CNE) problem with a separable non-smooth part, which is known to include the composite saddle-point (CSP) problem as a special case. Due to its two-block structure, this problem can be solved by any algorithm belonging to the block-decomposition hybrid proximal-extragradient (BD-HPE) framework. The framework consists of a … Read more

A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms

We propose a new first-order splitting algorithm for solving jointly the primal and dual formulations of large-scale convex minimization problems involving the sum of a smooth function with Lipschitzian gradient, a nonsmooth proximable function, and linear composite functions. This is a full splitting approach in the sense that the gradient and the linear operators involved … Read more

Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a uniform approach

This paper takes a uniform look at the customized applications of proximal point algorithm (PPA) to two classes of problems: the linearly constrained convex minimization problem with a generic or separable objective function and a saddle-point problem. We model these two classes of problems uniformly by a mixed variational inequality, and show how PPA with … Read more

Multiobjective DC Programming with Infinite Convex Constraints

In this paper new results are established in multiobjective DC programming with infinite convex constraints ($MOPIC$ for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision … Read more

Convergence analysis of primal-dual algorithms for total variation image restoration

Recently, some attractive primal-dual algorithms have been proposed for solving a saddle-point problem, with particular applications in the area of total variation (TV) image restoration. This paper focuses on the convergence analysis of existing primal-dual algorithms and shows that the involved parameters of those primal-dual algorithms (including the step sizes) can be significantly enlarged if … Read more

On the parallel solution of dense saddle-point linear systems arising in stochastic programming

We present a novel approach for solving dense saddle-point linear systems in a distributed-memory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular those arising in convex programming. Although stochastic optimization problems have … Read more