Accelerated Gradient Methods for Nonconvex Nonlinear and Stochastic Programming

In this paper, we generalize the well-known Nesterov’s accelerated gradient (AG) method, originally designed for convex smooth optimization, to solve nonconvex and possibly stochastic optimization problems. We demonstrate that by properly specifying the stepsize policy, the AG method exhibits the best known rate of convergence for solving general nonconvex smooth optimization problems by using first-order … Read more

Optimal scenario set partitioning for multistage stochastic programming with the progressive hedging algorithm

In this paper, we propose a new approach to reduce the total running time (RT) of the progressive hedging algorithm (PHA) for solving multistage stochastic programs (MSPs) defined on a scenario tree. Instead of using the conventional scenario decomposition scheme, we apply a multi-scenario decomposition scheme and partition the scenario set in order to minimize … Read more

Time Consistency Versus Law Invariance in Multistage Stochastic Optimization with Coherent Risk Measures: Multilevel Optimization Modeling and Computational Complexity

Coherent risk measures have become a popular tool for incorporating risk aversion into stochastic optimization models. For dynamic models in which un-certainly is resolved at more than one stage, however, use of coherent risk measures within a standard single-level optimization framework presents the modeler with an uncomfortable choice between two desirable model properties, time consistency … Read more

Mini-batch Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization

This paper considers a class of constrained stochastic composite optimization problems whose objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a certain non-differentiable (but convex) component. In order to solve these problems, we propose a randomized stochastic projected gradient (RSPG) algorithm, in which proper mini-batch of samples are … Read more

Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount … Read more

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable semi-infinite … Read more

Optimization Techniques for the Brazilian Natural Gas Network Planning Problem

This work reports on modeling and numerical experience in solving the long-term design and operation planning problem of the Brazilian natural gas network. A stochastic approach to address uncertainties related to the gas demand is considered. Representing uncertainties by finitely many scenarios increases the size of the resulting optimization problem, and therefore the difficulty to … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem

We suggest a method for equivalent transformation of a quantile optimization problem with discrete distribution of random parameters to mixed integer programming problems. The number of additional integer (in fact boolean) variables in the equivalent problems equals to the number of possible scenarios for random data. The obtained mixed integer problems are solved by standard … Read more

Two methods of pruning Benders’ cuts and their application to the management of a gas portfolio

In this article, we describe a gas portfolio management problem, which is solved with the SDDP (Stochastic Dual Dynamic Programming) algorithm. We present some improvements of this algorithm and focus on methods of pruning Benders’ cuts, that is to say, methods of picking out the most relevant cuts among those which have been computed. Our … Read more