On the convergence of decomposition methods for multi-stage stochastic convex programs

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to … Read more

Stochastic integer programming based algorithms for adaptable open block surgery scheduling

We develop algorithms for adaptable schedule problems with patient waiting time, surgeon waiting time, OR idle time and overtime costs. Open block surgery scheduling of multiple surgeons operating in multiple operating rooms (ORs) motivates the work. We investigate creating an “adaptable” schedule of surgeries under knowledge that this schedule will change (be rescheduled) during execution … Read more

Consistency of sample estimates of risk averse stochastic programs

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent identically distributed data. Under mild regularity conditions we prove a Law of Large Numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straight forward way to establishing … Read more

Complexity of Bilevel Coherent Risk Programming

This paper considers a bilevel programming approach to applying coherent risk measures to extended two-stage stochastic programming problems. This formulation technique avoids the time-inconsistency issues plaguing naive models and the incomposability issues which cause time-consistent formulations to have complicated, hard-to-explain objective functions. Unfortunately, the analysis here shows that such bilevel formulations, when using the standard … Read more

The Decision Rule Approach to Optimization under Uncertainty: Methodology and Applications

Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to small and medium-sized problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions). In the last few … Read more

Optimizing Trading Decisions for Hydro Storage Systems using Approximate Dual Dynamic Programming

We propose a new approach to optimize operations of hydro storage systems with multiple connected reservoirs which participate in wholesale electricity markets. Our formulation integrates short-term intraday with long-term interday decisions. The intraday problem considers bidding decisions as well as storage operation during the day and is formulated as a stochastic program. The interday problem … Read more

Higher-Order Confidence Intervals for Stochastic Programming using Bootstrapping

We study the problem of constructing confidence intervals for the optimal value of a stochastic programming problem by using bootstrapping. Bootstrapping is a resampling method used in the statistical inference of unknown parameters for which only a small number of samples can be obtained. One such parameter is the optimal value of a stochastic optimization … Read more

Stochastic approaches for solving Rapid Transit Network Design models with random demand

We address rapid transit network design problems characterized by uncertainty in the input data. Network design has a determinant impact on the future e ective- ness of the system. Design decisions are made with a great degree of uncertainty about the conditions under which the system will be required to operate. The de- mand is one … Read more

A copula-based heuristic for scenario generation

This paper presents a new heuristic for generating scenarios for two-stage stochastic programs. The method uses copulas to describe the dependence between the marginal distributions, instead of the more common correlations. The heuristic is then tested on a simple portfolio-selection model, and compared to two other scenario-generation methods. Citation Published in Computational Management Science, 11 … Read more

Probabilistic Set Covering with Correlations

We consider a probabilistic set covering problem where there is uncertainty regarding whether a selected set can cover an item, and the objective is to determine a minimum-cost combination of sets so that each item is covered with a pre-specified probability. To date, literature on this problem has focused on the special case in which … Read more