Complexity and global rates of trust-region methods based on probabilistic models

Trust-region algorithms have been proved to globally converge with probability one when the accuracy of the trust-region models is imposed with a certain probability conditioning on the iteration history. In this paper, we study their complexity, providing global rates and worst case complexity bounds on the number of iterations (with overwhelmingly high probability), for both … Read more

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem

We describe trlib, a library that implements a Variant of Gould’s Generalized Lanczos method (Gould et al. in SIAM J. Opt. 9(2), 504–525, 1999) for solving the trust region problem. Our implementation has several distinct features that set it apart from preexisting ones. We implement both conjugate gradient (CG) and Lanczos iterations for assembly of … Read more

A New First-order Algorithmic Framework for Optimization Problems with Orthogonality Constraints

In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the function value reduction step of our algorithmic framework searches along the standard Euclidean … Read more

A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints

An algorithm is presented for solving nonlinear optimization problems with chance constraints, i.e., those in which a constraint involving an uncertain parameter must be satisfied with at least a minimum probability. In particular, the algorithm is designed to solve cardinality-constrained nonlinear optimization problems that arise in sample average approximations of chance-constrained problems, as well as … Read more

Complexity bounds for primal-dual methods minimizing the model of objective function

We provide Frank-Wolfe ($\equiv$ Conditional Gradients) method with a convergence analysis allowing to approach a primal-dual solution of convex optimization problem with composite objective function. Additional properties of complementary part of the objective (strong convexity) significantly accelerate the scheme. We also justify a new variant of this method, which can be seen as a trust-region … Read more

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS

We present a MATLAB implementation of the shape-changing sym- metric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms [4, 3] to decompose the trust-region subproblem into two separate problems. Using one of … Read more

A progressive barrier derivative-free trust-region algorithm for constrained optimization

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the … Read more

Kronecker Product Constraints for Semidefinite Optimization

We consider semidefinite optimization problems that include constraints that G(x) and H(x) are positive semidefinite (PSD), where the components of the symmetric matrices G(x) and H(x) are affine functions of an n-vector x. In such a case we obtain a new constraint that a matrix K(x,X) is PSD, where the components of K(x,X) are affine … Read more

A Second-Order Cone Based Approach for Solving the Trust Region Subproblem and Its Variants

We study the trust region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone based approach to derive an exact … Read more

Local Nonglobal Minima for Solving Large Scale Extended Trust Region Subproblems

We study large scale extended trust region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS and that there are efficient algorithms for solving … Read more