Two-level value function approach to nonsmooth optimistic and pessimistic bilevel programs

The authors’ paper in Ref. [5], was the first one to provide detailed optimality conditions for pessimistic bilevel optimization. The results there were based on the concept of the two-level optimal value function introduced and analyzed in Ref. [4], for the case of optimistic bilevel programs. One of the basic assumptions in both of these … Read more

The Rate of Convergence of Augmented Lagrange Method for a Composite Optimization Problem

In this paper we analyze the rate of local convergence of the augmented Lagrange method for solving optimization problems with equality constraints and the objective function expressed as the sum of a convex function and a twice continuously differentiable function. The presence of the non-smoothness of the convex function in the objective requires extensive tools … Read more

Solving ill-posed bilevel programs

This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to … Read more

Discrete Approximations of a Controlled Sweeping Process

The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhedral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of … Read more

HIGHER-ORDER METRIC SUBREGULARITY AND ITS APPLICATIONS

This paper is devoted to the study of metric subregularity and strong subregularity of any positive order $q$ for set-valued mappings in finite and infinite dimensions. While these notions have been studied and applied earlier for $q=1$ and—to a much lesser extent—for $q\in(0,1)$, no results are available for the case $q>1$. We derive characterizations of … Read more

Calmness of linear programs under perturbations of all data: characterization and modulus

This paper provides operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations … Read more

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

Alternating projections and coupling slope

We consider the method of alternating projections for finding a point in the intersection of two possibly nonconvex closed sets. We present a local linear convergence result that makes no regularity assumptions on either set (unlike previous results), while at the same time weakening standard transversal intersection assumptions. The proof grows out of a study … Read more

Full stability of locally optimal solutions in second-order cone programming

The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to problems of second-order cone programming (SOCP) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sucient conditions under the corresponding constraint quali cations. We also establish close relationships between … Read more

KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization

For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both … Read more