Solving Heated Oil Pipeline Problems Via Mixed Integer Nonlinear Programming Approach

It is a crucial problem how to heat oil and save running cost for crude oil transport. This paper strictly formulates such a heated oil pipeline problem as a mixed integer nonlinear programming model. Nonconvex and convex continuous relaxations of the model are proposed, which are proved to be equivalent under some suitable conditions. Meanwhile, … Read more

Warm-start of interior point methods for second order cone optimization via rounding over optimal Jordan frames

Interior point methods (IPM) are the most popular approaches to solve Second Order Cone Optimization (SOCO) problems, due to their theoretical polynomial complexity and practical performance. In this paper, we present a warm-start method for primal-dual IPMs to reduce the number of IPM steps needed to solve SOCO problems that appear in a Branch and … Read more

New Analysis and Results for the Conditional Gradient Method

We present new results for the conditional gradient method (also known as the Frank-Wolfe method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size rules and computational guarantees that depend naturally on the warm-start quality of the initial … Read more

Constraint Reduction with Exact Penalization for Model-Predictive Rotorcraft Control

Model Predictive Control (also known as Receding Horizon Control (RHC)) has been highly successful in process control applications. Its use for aerospace applications has been hindered by its high computational requirements. In the present paper, we propose using enhanced primal-dual interior-point optimization techniques in the convex-quadratic-program-based RHC control of a rotorcraft. Our enhancements include a … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

A Warm-Start Approach for Large-Scale Stochastic Linear Programs

We describe a method of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree … Read more

On warm starts for interior methods

An appealing feature of interior methods for linear programming is that the number of iterations required to solve a problem tends to be relatively insensitive to the choice of initial point. This feature has the drawback that it is difficult to design interior methods that efficiently utilize information from an optimal solution to a “nearby” … Read more

An Algorithm for Perturbed Second-order Cone Programs

The second-order cone programming problem is reformulated into several new systems of nonlinear equations. Assume the perturbation of the data is in a certain neighborhood of zero. Then starting from a solution to the old problem, the semismooth Newton’s iterates converge Q-quadratically to a solution of the perturbed problem. The algorithm is globalized. Numerical examples … Read more

An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems

In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more