A comparison of the Sherali-Adams, Lov\’asz-Schrijver and Lasserre relaxations for sh-1$ programming

Sherali and Adams \cite{SA90}, Lov\’asz and Schrijver \cite{LS91} and, recently, Lasserre \cite{Las01b} have proposed lift and project methods for constructing hierarchies of successive linear or semidefinite relaxations of a $0-1$ polytope $P\subseteq \oR^n$ converging to $P$ in $n$ steps. Lasserre’s approach uses results about representations of positive polynomials as sums of squares and the dual … Read more

On the convergence of the central path in semidefinite optimization

The central path in linear optimization always converges to the analytic center of the optimal set. This result was extended to semidefinite programming by Goldfarb and Scheinberg (SIAM J. Optim. 8: 871-886, 1998). In this paper we show that this latter result is not correct in the absence of strict complementarity. We provide a counterexample, … Read more

On Solving The Progressive Party Problem as a MIP

The `Progressive Party Problem’ [smith1995] has long been considered a problem intractable for branch-and-bound mixed integer solvers. Quite impressive results have been reported with constraint programming systems for this problem. As a result the problem has become a standard example in texts on constraint programming. Fortunately, there has been progress in the mixed integer programming … Read more

A GRASP with path-relinking for private virtual circuit routing

A frame relay service offers virtual private networks to customers by provisioning a set of long-term private virtual circuits (PVCs) between customer endpoints on a large backbone network. During the provisioning of a PVC, routing decisions are made without any knowledge of future requests. Over time, these decisions can cause inefficiencies in the network and … Read more

Improved complexity for maximum volume inscribed ellipsoids

Let $\Pcal=\{x | Ax\le b\}$, where $A$ is an $m\times n$ matrix. We assume that $\Pcal$ contains a ball of radius one centered at the origin, and is contained in a ball of radius $R$ centered at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed in $\Pcal$. Such ellipsoids have … Read more

Geometry of Semidefinite Max-Cut Relaxations via Ranks

Semidefinite programming (SDP) relaxations are proving to be a powerful tool for finding tight bounds for hard discrete optimization problems. This is especially true for one of the easier NP-hard problems, the Max-Cut problem (MC). The well-known SDP relaxation for Max-Cut, here denoted SDP1, can be derived by a first lifting into matrix space and … Read more

Augmented self-concordant barriers and nonlinear optimization problems with finite complexity.

In this paper we study special barrier functions for the convex cones, which are the sum of a self-concordant barrier for the cone and a positive-semidefinite quadratic form. We show that the central path of these augmented barrier functions can be traced with linear speed. We also study the complexity of finding the analytic center … Read more

Componentwise fast convergence in the solution of full-rank systems of nonlinear equations

The asymptotic convergence of parameterized variants of Newton’s method for the solution of nonlinear systems of equations is considered. The original system is perturbed by a term involving the variables and a scalar parameter which is driven to zero as the iteration proceeds. The exact local solutions to the perturbed systems then form a differentiable … Read more

An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming

We study the asymptotic behavior of the interior-point bounds arising from the work of Yildirim and Todd on sensitivity analysis in semidefinite programming in comparison with the optimal partition bounds. For perturbations of the right-hand side vector and the cost matrix, we show that the interior-point bounds evaluated on the central path using the Monteiro-Zhang … Read more