A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

A new method for the efficient solution of free material optimization problems is introduced. The method extends the sequential convex programming (SCP) concept to a class of optimization problems with matrix variables. The basic idea of the new method is to approximate the original optimization problem by a sequence of subproblems, in which nonlinear functions … Read more

Optimization by the Fixed-Point Method, Version 2.17

Abstract: After developing necessary background theory, the original primal and dual are specified, and the invariant primal and dual LP’s are defined. Pairs of linear mappings are defined which establish an effectively one-to-one correspondences between solutions to the original and invariant problems. The invariant problems are recast as a fixed-point problem and precise solution conditions … Read more

H2-optimal model reduction of MIMO systems

We consider the problem of approximating a $p\times m$ rational transfer function $H(s)$ of high degree by another $p\times m$ rational transfer function $\hat{H}(s)$ of much smaller degree. We derive the gradients of the $H_2$-norm of the approximation error and show how stationary points can be described via tangential interpolation. CitationTechnical report UCL-INMA-2007.034, Department of … Read more

A New Class of Self-Concordant Barriers from Separable Spectral Functions

Given a separable strongly self-concordant function f:Rn -> R, we show the associated spectral function F(X)= (foL)(X) is also strongly self-concordant function. In addition, there is a universal constant O such that, if f(x) is separable self-concordant barrier then O^2F(X) is a self-concordant barrier. We estimate that for the universal constant we have O

The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

On hyperbolicity cones associated with elementary symmetric polynomials

Elementary symmetric polynomials can be thought of as derivative polynomials of $E_n(x)=\prod_{i=1,\ldots,n} x_i$. Their associated hyperbolicity cones give a natural sequence of relaxations for $\Re^n_+$. We establish a recursive structure for these cones, namely, that the coordinate projections of these cones are themselves hyperbolicity cones associated with elementary symmetric polynomials. As a consequence of this … Read more

Convergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization

In this paper we present the convergence analysis of the inexact infeasible path-following(IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes … Read more

An Active-Set Algorithm for Nonlinear Programming Using Parametric Linear Programming

This paper describes an active-set algorithm for nonlinear programming that solves a parametric linear programming subproblem at each iteration to generate an estimate of the active set. A step is then computed by solving an equality constrained quadratic program based on this active-set estimate. This approach respresents an extension of the standard sequential linear-quadratic programming … Read more

Computational experience with general cutting planes for the Set Covering problem

In this paper we present a cutting plane algorithm for the Set Covering problem. Cutting planes are generated by a “general” (i.e. not based on the “template paradigm”) separation algorithm based on the following idea: i) identify a suitably small subproblem defined by a subset of the constraints of the formulation; ii) run an exact … Read more

Local convergence for alternating and averaged nonconvex projections

The idea of a finite collection of closed sets having “strongly regular intersection” at a given point is crucial in variational analysis. We show that this central theoretical tool also has striking algorithmic consequences. Specifically, we consider the case of two sets, one of which we assume to be suitably “regular” (special cases being convex … Read more