Information-Based Branching Schemes for Binary Linear Mixed Integer Problems

Branching variable selection can greatly a ffect the eff ectiveness and efficiency of a branch-and- bound algorithm. Traditional approaches to branching variable selection rely on estimating the eff ect of the candidate variables on the objective function. We propose an approach which is empowered by exploiting the information contained in a family of fathomed subproblems, collected beforehand from … Read more

Provably Near-Optimal Solutions for Very Large Single-Row Facility Layout Problems

The facility layout problem is a global optimization problem that seeks to arrange a given number of rectangular facilities so as to minimize the total cost associated with the (known or projected) interactions between them. This paper is concerned with the single-row facility layout problem (SRFLP), the one-dimensional version of facility layout that is also … Read more

The Multidimensional Knapsack Problem: Structure and Algorithms

We study the multidimensional knapsack problem, present some theoretical and empirical results about its structure, and evaluate different Integer Linear Programming (ILP) based, metaheuristic, and collaborative approaches for it. We start by considering the distances between optimal solutions to the LP-relaxation and the original problem and then introduce a new core concept for the MKP, … Read more

Bundle Methods for Convex Minimization with Partially Inexact Oracles

Recently the proximal bundle method for minimizing a convex function has been extended to an inexact oracle that delivers function and subgradient values of unknown accuracy. We adapt this method to a partially inexact oracle that becomes exact only when an objective target level for a descent step is met. In Lagrangian relaxation, such oracles … Read more

Classification with Guaranteed Probability of Error

We introduce a general-purpose learning machine that we call the “Guaranteed Error Machine”, or GEM, and two learning algorithms, a “real GEM algorithm” and an “ideal GEM algorithm”. The real GEM algorithm is for use in real applications, while the ideal GEM algorithm is introduced as a theoretical tool; however, these two algorithms have identical … Read more

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of new termination criteria based on the $\varepsilon$-enlargement of a maximal monotone operator. The advantage … Read more

On Mixing Sets Arising in Chance-Constrained Programming

The mixing set with a knapsack constraint arises in deterministic equivalent of probabilistic programming problems with finite discrete distributions. We first consider the case that the probabilistic program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this … Read more

A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data

Recent compressive sensing results show that it is possible to accurately reconstruct certain compressible signals from relatively few linear measurements via solving nonsmooth convex ptimization problems. In this paper, we propose a simple and fast algorithm for signal reconstruction from partial Fourier data. The algorithm minimizes the sum of three terms corresponding to total variation, … Read more

A Fast Algorithm for Sparse Reconstruction based on Shrinkage, Subspace Optimization and Continuation

We propose a fast algorithm for solving the l1-regularized least squares problem for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a first-order iterative method called “shrinkage” yields an estimate of the subset of components … Read more

A Biased Random-Key Genetic Algorithm with Forward-Backward Improvement for the Resource Constrained Project Scheduling Problem

This paper presents a biased random-keys genetic algorithm for the Resource Constrained Project Scheduling Problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all … Read more