Penalty Decomposition Methods for hBcNorm Minimization

In this paper we consider general l0-norm minimization problems, that is, the problems with l0-norm appearing in either objective function or constraint. In particular, we first reformulate the l0-norm constrained problem as an equivalent rank minimization problem and then apply the penalty decomposition (PD) method proposed in [33] to solve the latter problem. By utilizing … Read more

Penalty Decomposition Methods for Rank Minimization

In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first show that a class of matrix optimization problems can be solved as lower dimensional vector optimization problems. As a consequence, we establish that a class of rank minimization problems have closed form solutions. Using this … Read more

Scenario decomposition of risk-averse multistage stochastic programming problems

For a risk-averse multistage stochastic optimization problem with a finite scenario tree, we introduce a new scenario decomposition method and we prove its convergence. The method is applied to a risk-averse inventory and assembly problem. In addition, we develop a partially regularized bundle method for nonsmooth optimization. Citation RUTCOR, Rutgers University, Piscataway, NJ 08854 Article … Read more

MultiRTA: A simple yet accurate method for predicting peptide binding affinities for multiple class II MHC allotypes

Background: The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination of peptide-MHC binding affinities is infeasible due … Read more

New formulas for the Fenchel subdifferential of the conjugate function

Following [13] we provide new formulas for the Fenchel subdifferential of the conjugate of functions defined on locally convex spaces. In particular, this allows deriving expressions for the minimizers set of the lower semicontinuous convex hull of such functions. These formulas are written by means of primal objects related to the subdifferential of the initial … Read more

Convergence rate of inexact proximal point methods with relative error criteria for convex optimization

In this paper, we consider a class of inexact proximal point methods for convex optimization which allows a relative error tolerance in the approximate solution of each proximal subproblem. By exploiting the special structure of convex optimization problems, we are able to derive surprising complexity bounds for the aforementioned class. As a consequence, we show … Read more

Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an … Read more

Computational and Economic Limitations of Dispatch Operations in the Next-Generation Power Grid

We study the interactions between computational and economic performance of dispatch operations under highly dynamic environments. In particular, we discuss the need for extending the forecast horizon of the dispatch formulation in order to anticipate steep variations of renewable power and highly elastic loads. We present computational strategies to solve the increasingly larger optimization problems … Read more

Robust capacity expansion solutions for telecommunication networks with uncertain demands

We consider the capacity planning of telecommunication networks with linear investment costs and uncertain future traffic demands. Transmission capacities must be large enough to meet, with a high quality of service, the range of possible demands, after adequate routings of messages on the created network. We use the robust optimization methodology to balance the need … Read more

Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems

optimization problems in which the random variables are represented by an extremely large number of scenarios. The method involves the binarization of the probability distribution, and the generation of a consistent partially defined Boolean function (pdBf) representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p. We show that … Read more