Solving the High School Timetabling Problem to optimality by using ILS algorithms

The high school timetabling is a classical problem and has many combinatorial variations. It is NP-Complete and since the use of exact methods for this problem is restricted, heuristics are usually employed. This paper applies three Iterated Local Search (ILS) algorithms which includes two newly proposed neighborhood operators to heuristically solve a benchmark of the … Read more

Equipment Selection for Surface Mining: A Review

One of the challenging problems for surface mining operation optimization is choosing the optimal truck and loader fleet. This problem is the Equipment Selection Problem (ESP). In this paper, we describe the ESP in the context of surface mining. We discuss related problems and applications. Within the scope of both the ESP and related problems, … Read more

Interdiction Games on Markovian PERT Networks

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, while an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either pre-committed or adapts … Read more

Alternating active-phase algorithm for multimaterial topology optimization problems — a 115-line MATLAB implementation

A new algorithm for the solution of multimaterial topology optimization problems is introduced in the present study. The presented method is based on the splitting of a multiphase topology optimization problem into a series of binary phase topology optimization sub-problems which are solved partially, in a sequential manner, using a traditional binary phase topology optimization … Read more

On the sufficiency of finite support duals in semi-infinite linear programming

We consider semi-infinite linear programs with countably many constraints indexed by the natural numbers. When the constraint space is the vector space of all real valued sequences, we show the finite support (Haar) dual is equivalent to the algebraic Lagrangian dual of the linear program. This settles a question left open by Anderson and Nash~\cite{anderson-nash}. … Read more

A doubly stabilized bundle method for nonsmooth convex optimization

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level … Read more

Locally Ideal Formulations for Piecewise Linear Functions with Indicator Variables

In this paper, we consider mixed integer linear programming (MIP) formulations for piecewise linear functions (PLFs) that are evaluated when an indicator variable is turned on. We describe modifications to standard MIP formulations for PLFs with desirable theoretical properties and superior computational performance in this context. CitationTechnical Report #1788, Computer Sciences Department, University of Wisconsin-Madison.ArticleDownload … Read more

Orthogonal invariance and identifiability

Orthogonally invariant functions of symmetric matrices often inherit properties from their diagonal restrictions: von Neumann’s theorem on matrix norms is an early example. We discuss the example of “identifiability”, a common property of nonsmooth functions associated with the existence of a smooth manifold of approximate critical points. Identifiability (or its synonym, “partial smoothness”) is the … Read more

On the use of semi-closed sets and functions in convex analysis

The main aim of this short note is to show that the sub\-differentiability and duality results established by Laghdir (2005), Laghdir and Benabbou (2007), and Alimohammady \emph{et al.}\ (2011), stated in Fréchet spaces, are consequences of the corresponding known results using Moreau–Rockafellar type conditions. ArticleDownload View PDF

A splitting minimization method on geodesic spaces

We present in this paper the alternating minimization method on CAT(0) spaces for solving unconstraints convex optimization problems. Under the assumption that the function being minimize is convex, we prove that the sequence generated by our algorithm converges to a minimize point. The results presented in this paper are the first ones of this type … Read more