Globally convergent DC trust-region methods

In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of … Read more

Convergence of trust-region methods based on probabilistic models

In this paper we consider the use of probabilistic or random models within a classical trust-region framework for optimization of deterministic smooth general nonlinear functions. Our method and setting differs from many stochastic optimization approaches in two principal ways. Firstly, we assume that the value of the function itself can be computed without noise, in … Read more

Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs

We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than … Read more

Tail bounds for stochastic approximation

Stochastic-approximation gradient methods are attractive for large-scale convex optimization because they offer inexpensive iterations. They are especially popular in data-fitting and machine-learning applications where the data arrives in a continuous stream, or it is necessary to minimize large sums of functions. It is known that by appropriately decreasing the variance of the error at each … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

A SIMPLE TROLLEY-LIKE MODEL IN THE PRESENCE OF A NONLINEAR FRICTION AND A BOUNDED FUEL EXPENDITURE

We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

An inexact proximal bundle method with applications to convex conic programming

We present an inexact bundle method for minimizing an unconstrained convex sup-function with an open domain. Under some mild assumptions, we reformulate a convex conic programming problem as such problem in terms of the support function. This method is a first-order method, hence it requires much less computational cost in each iteration than second-order approaches … Read more

Universal gradient methods for convex optimization problems

In this paper, we present new methods for black-box convex minimization. They do not need to know in advance the actual level of smoothness of the objective function. Their only essential input parameter is the required accuracy of the solution. At the same time, for each particular problem class they automatically ensure the best possible … Read more

Solving the High School Timetabling Problem to optimality by using ILS algorithms

The high school timetabling is a classical problem and has many combinatorial variations. It is NP-Complete and since the use of exact methods for this problem is restricted, heuristics are usually employed. This paper applies three Iterated Local Search (ILS) algorithms which includes two newly proposed neighborhood operators to heuristically solve a benchmark of the … Read more