Block-wise Alternating Direction Method of Multipliers with Gaussian Back Substitution for Multiple-block Convex Programming

We consider the linearly constrained convex minimization model with a separable objective function which is the sum of m functions without coupled variables, and discuss how to design an efficient algorithm based on the fundamental technique of splitting the augmented Lagrangian method (ALM). Our focus is the specific big-data scenario where m is huge. A … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

The Checkpoint Ordering Problem

We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to … Read more

A Semidefinite Optimization Approach to the Parallel Row Ordering Problem

The $k$-Parallel Row Ordering Problem (kPROP) is an extension of the Single-Row Facility Layout Problem (SRFLP) that considers arrangements of the departments along more than one row. We propose an exact algorithm for the kPROP that extends the semidefinite programming approach for the SRFLP by modelling inter-row distances as products of ordering variables. For k=2 … Read more

Tight extended formulations for independent set

This paper describes tight extended formulations for independent set. The first formulation is for arbitrary independence systems and has size $O(n+\mu)$, where $\mu$ denotes the number of inclusion-wise maximal independent sets. Consequently, the extension complexity of the independent set polytope of graphs is $O(1.4423^n)$. The size $O(2^\tw n)$ of the second extended formulation depends on … Read more

RBFOpt: an open-source library for black-box optimization with costly function evaluations

We consider the problem of optimizing an unknown function given as an oracle over a mixed-integer box-constrained set. We assume that the oracle is expensive to evaluate, so that estimating partial derivatives by finite differences is impractical. In the literature, this is typically called a black-box optimization problem with costly evaluation. This paper describes the … Read more

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate (SPDC) method, which alternates between maximizing over a randomly chosen dual variable and minimizing over the primal variable. An … Read more

On the worst case performance of the steepest descent algorithm for quadratic functions

\begin{abstract} The existing choices for the step lengths used by the classical steepest descent algorithm for minimizing a convex quadratic function require in the worst case $ \Or(C\log(1/\eps)) $ iterations to achieve a precision $ \eps $, where $ C $ is the Hessian condition number. We show how to construct a sequence of step … Read more