A characterization of Nash equilibrium for the games with random payoffs

We consider a two player bimatrix game where the entries of the payoff matrices are random variables. We formulate this problem as a chance-constrained game by considering that the payoff of each player is defined using a chance constraint. We consider the case where the entries of the payoff matrices are independent normal/Cauchy random variables. … Read more

Infinite horizon optimal policy for an inventory system with two types of products sharing common hardware platforms

We consider a periodic review inventory system and present its optimal policy in the infinite horizon setting. The optimal inventory policy that maximizes the infinite horizon expected discount profit for the model is analytically obtained by relating to the finite horizon setting using results from variational analysis. Results are provided that elucidate the operations of … Read more

LP-based Tractable Subcones of the Semidefinite Plus Nonnegative Cone

The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative cone and showed that satisfaction of the requirements for membership of those subcones can be detected by solving linear optimization problems (LPs) with $O(n)$ variables and $O(n^2)$ constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this … Read more

Distributed Stochastic Variance Reduced Gradient Methods and a Lower Bound for Communication Complexity

We study distributed optimization algorithms for minimizing the average of convex functions. The applications include empirical risk minimization problems in statistical machine learning where the datasets are large and have to be stored on different machines. We design a distributed stochastic variance reduced gradient algorithm that, under certain conditions on the condition number, simultaneously achieves … Read more

Euler Polytopes and Convex Matroid Optimization

Del Pia and Michini recently improved the upper bound of kd due to Kleinschmidt and Onn for the largest possible diameter of the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. We introduce Euler polytopes which include a family of lattice polytopes with diameter (k+1)d/2, … Read more

Accelerated First-Order Methods for Hyperbolic Programming

A framework is developed for applying accelerated methods to general hyperbolic programming, including linear, second-order cone, and semidefinite programming as special cases. The approach replaces a hyperbolic program with a convex optimization problem whose smooth objective function is explicit, and for which the only constraints are linear equations (one more linear equation than for the … Read more

Local Nonglobal Minima for Solving Large Scale Extended Trust Region Subproblems

We study large scale extended trust region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS and that there are efficient algorithms for solving … Read more

The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation

The Barzilai-Borwein method, an effective gradient descent method with clever choice of the step-length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line-search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian Barzilai-Borwein method with nonmonotone line-search … Read more

PIPS-SBB: A parallel distributed-memory branch-and-bound algorithm for stochastic mixed-integer programs

Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. To overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels … Read more